Skip to main content

A Survey of Learning to Rank for Real-Time Twitter Search

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7719))

Abstract

Recently learning to rank has been widely used in real-time Twitter Search by integrating various of evidence of relevance and recency features into together. In real-time Twitter search, whereby the information need of a user is represented by a query at a specific time, users are interested in fresh messages. In this paper, we introduce a new ranking strategy to rerank the tweets by incorporating multiple features. Besides, an empirical study of learning to rank for real-time Twitter search is conducted by adopting the state-of-the-art learning to rank approaches. Experiments on the standard TREC Tweets11 collection show that both the listwise and pairwise learning to rank methods outperform baselines, namely the content-based retrieval models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C.: Terrier: A high performance and scalable information retrieval platform. In: SIGIR OSIR (2006)

    Google Scholar 

  2. Amati, G.: Probabilistic models for information retrieval based on divergence from randomness. PhD thesis, DCS, University of Glasgow (2003)

    Google Scholar 

  3. Amati, G., Amodeo, G., Bianchi, M., Celi, A., Nicola, C.D., Flammini, M., Gaibisso, C., Gambosi, G., Marcone, G.: Fub, iasi-cnr, UNIVAQ at TREC 2011. In: TREC (2011)

    Google Scholar 

  4. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100 (1998)

    Google Scholar 

  5. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in twitter: The million follower fallacy. In: ICWSM (2010)

    Google Scholar 

  6. Chapelle, O., Yang, Y.: Yahoo! Learning to Rank Challenge Overview. In: JMLR (2011)

    Google Scholar 

  7. Dong, A., Chang, Y., Zheng, Z., Mishne, G., Bai, J., Zhang, R., Buchner, K., Liao, C., Diaz, F.: Towards recency ranking in web search. In: WSDM, pp. 11–20 (2010)

    Google Scholar 

  8. Duan, Y., Jiang, L., Qin, T., Zhou, M., Shum, H.-Y.: An empirical study on learning to rank of tweets. In: COLING, pp. 295–303. Tsinghua University, Beijing (2010)

    Google Scholar 

  9. Duh, K., Kirchhoff, K.: Learning to rank with partially-labeled data. In: SIGIR, pp. 251–258 (2008)

    Google Scholar 

  10. Efron, M., Golovchinksy, G.: Estimation methods for ranking recent information. In: SIGIR, pp. 495–504 (2011)

    Google Scholar 

  11. El-Yaniv, R., Pechyony, D.: Stable Transductive Learning. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 35–49. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: LREC, pp. 417–422 (2006)

    Google Scholar 

  13. Ganjisaffar, Y., Caruana, R., Lope, C.: Bagging gradient-boosted trees for high precision, low variance ranking models. In: SIGIR, pp. 85–94 (2011)

    Google Scholar 

  14. Geng, X., Liu, T.-Y., Qin, T., Arnold, A., Li, H., Shum, H.-Y.: Query dependent ranking using k-nearest neighbor. In: SIGIR, pp. 115–122 (2008)

    Google Scholar 

  15. Hong, D., Wang, Q., Zhang, D., Si, L.: Query expansion and message-passing algorithms for TREC microblog track. In: TREC (2011)

    Google Scholar 

  16. Huang, X., Huang, Y., Wen, M., An, A., Liu, Y., Poon, J.: Applying data mining to pseudo-relevance feedback for high performance text retrieval. In: ICDM, pp. 295–306 (2006)

    Google Scholar 

  17. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD, pp. 133–142 (2002)

    Google Scholar 

  18. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598) (1983)

    Google Scholar 

  19. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW, pp. 591–600 (2010)

    Google Scholar 

  20. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR, pp. 120–127 (2001)

    Google Scholar 

  21. Li, X., Croft, W.B.: Time-based language models. In: CIKM, pp. 469–475 (2003)

    Google Scholar 

  22. Li, Y., Zhang, Z., Lv, W., Xie, Q., Lin, Y., Xu, R., Xu, W., Chen, G., Guo, J.: PRIS at TREC 2011 microblog track. In: TREC (2011)

    Google Scholar 

  23. Liu, T.: Learning to rank for information retrieval. Foundations and Trends in Information Retrieval (3), 225–331 (2009)

    Google Scholar 

  24. Louvan, S., Ibrahim, M., Adriani, M., Vania, C., Distiawan, B., Wanagiri, M.Z.: University of Indonesia at TREC 2011 microblog track. In: TREC (2011)

    Google Scholar 

  25. Metzler, D., Cai, C.: Usc/isi at TREC 2011: Microblog track. In: TREC (2011)

    Google Scholar 

  26. Miyanishi, T., Okamura, N., Liu, X., Seki, K., Uehara, K.: TREC 2011 microblog track experiments at KOBE university. In: TREC, Gaithersburg, MD (2011)

    Google Scholar 

  27. Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC 2011 microblog track. In: TREC, Gaithersburg, MD (2011)

    Google Scholar 

  28. Ounis, I., Macdonald, C., Soboroff, I.: On the TREC blog track. In: ICWSM, Seattle, WA (2008)

    Google Scholar 

  29. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gatford, M., Payne, A.: Okapi at TREC-4. In: TREC (1995)

    Google Scholar 

  30. Rocchio, J.: Relevance feedback in information retrieval, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  31. Sellamanickam, S., Garg, P., Selvaraj, S.K.: A pairwise ranking based approach to learning with positive and unlabeled examples. In: CIKM, pp. 663–672 (2011)

    Google Scholar 

  32. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  33. Veloso, A.A., Almeida, H.M., Gonçalves, M.A., Meira Jr., W.: Learning to rank at query-time using association rules. In: SIGIR, pp. 267–274 (2008)

    Google Scholar 

  34. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  35. Wu, J., Yang, Z., Lin, Y., Lin, H., Ye, Z., Xu, K.: Learning to rank using query-level regression. In: SIGIR, pp. 1091–1092 (2011)

    Google Scholar 

  36. Wu, Q., Burges, C., Svore, K., Cao, J.: Ranking boosting and model adaptation. Technical report, Microsoft (2008)

    Google Scholar 

  37. Ye, Z., He, B., Huang, X., Lin, H.: Revisiting Rocchio’s Relevance Feedback Algorithm for Probabilistic Models. In: Cheng, P.-J., Kan, M.-Y., Lam, W., Nakov, P. (eds.) AIRS 2010. LNCS, vol. 6458, pp. 151–161. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  38. Zhai, C., Lafferty, J.D.: Model-based feedback in the language modeling approach to information retrieval. In: CIKM, pp. 403–410 (2001)

    Google Scholar 

  39. Zheng, Z., Zha, H., Sun, G.: Query-level learning to rank using isotonic regression. In: Allerton, pp. 1108–1115 (2008)

    Google Scholar 

  40. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: ICML, pp. 129–136 (2007)

    Google Scholar 

  41. Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the TREC 2011 microblog track. In: TREC, Gaithersburg, MD (2011)

    Google Scholar 

  42. OunIs, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High Performance and Scalable Information Retrieval Platform. In: Proceedings of ACM SIGIR 2006 Workshop on Open Source Information Retrieval (OSIR), Seattle, Washington, USA, August 10 (2006)

    Google Scholar 

  43. http://olivo.net/software/lc4j/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, F., Zhang, X., He, B., Luo, T., Wang, W. (2013). A Survey of Learning to Rank for Real-Time Twitter Search. In: Zu, Q., Hu, B., Elçi, A. (eds) Pervasive Computing and the Networked World. ICPCA/SWS 2012. Lecture Notes in Computer Science, vol 7719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37015-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37015-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37014-4

  • Online ISBN: 978-3-642-37015-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics