Skip to main content

The Challenges and Current Advances in Delivering RNAi as Therapeutics

  • Chapter
  • First Online:
DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The discovery of RNA interference (RNAi) has transformed molecular biology and offers enormous therapeutic potential. Currently, there are a few approaches to deliver RNAi into cells including the use of a small interfering RNA (siRNA) or a plasmid to express short hairpin RNA (shRNA) or microRNA. Each of these approaches has its advantages and drawbacks. To fully realise the potential of RNAi in clinic, hurdles including specificity, stability and interferon activation of the small RNA need to be overcome. In order to develop RNAi as pharmaceutics for a range of diseases, strategies to deliver the small RNA in specific cell types need to be further developed and refined. In this chapter, the different classes of small RNA, current strategies to overcome therapeutic hurdles and different methods to deliver RNAi are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11:671–681

    Article  PubMed  CAS  Google Scholar 

  • Allen LA, Aderem A (1996) Mechanisms of phagocytosis. Curr Opin Immunol 8:36–40

    Article  PubMed  CAS  Google Scholar 

  • Allerson CR, Sioufi N, Jarres R et al (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    Article  PubMed  CAS  Google Scholar 

  • Balicki D, Putnam CD, Scaria PV et al (2002) Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci USA 99:7467–7471

    Article  PubMed  CAS  Google Scholar 

  • Banan M, Puri N (2004) The ins and outs of RNAi in mammalian cells. Curr Pharm Biotechnol 5:441–450

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34:322–333

    Article  PubMed  CAS  Google Scholar 

  • Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev 57:505–527

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Aberle AM, Balasubramaniam RP et al (1997) Cationic lipid-mediated gene delivery to murine lung: correlation of lipid hydration with in vivo transfection activity. J Med Chem 40:4069–4078

    Article  PubMed  CAS  Google Scholar 

  • Berezikov E, Chung WJ, Willis J et al (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Bielinska AU, Chen C, Johnson J et al (1999) DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjug Chem 10:843–850

    Article  PubMed  CAS  Google Scholar 

  • Birmingham A, Anderson EM, Reynolds A et al (2006) 3′UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  PubMed  CAS  Google Scholar 

  • Brodsky FM, Chen CY, Knuehl C et al (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17:517–568

    Article  PubMed  CAS  Google Scholar 

  • Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  PubMed  CAS  Google Scholar 

  • Cardoso AL, Simoes S, de Almeida LP et al (2008) Tf-lipoplexes for neuronal siRNA delivery: a promising system to mediate gene silencing in the CNS. J Control Release 132:113–123

    Article  PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Thrasher A, Mavilio F (2004) The future of gene therapy. Nature 427:779–781

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    Article  PubMed  CAS  Google Scholar 

  • Check E (2003) Harmful potential of viral vectors fuels doubts over gene therapy. Nature 423:573–574

    PubMed  CAS  Google Scholar 

  • Chen CC, Sun CP, Ma HI et al (2009) Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther 17:352–359

    Article  PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  PubMed  CAS  Google Scholar 

  • Couzin J (2002) Breakthrough of the year. Small RNAs make big splash. Science 298:2296–2297

    Article  PubMed  CAS  Google Scholar 

  • Dams ET, Laverman P, Oyen WJ et al (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079

    PubMed  CAS  Google Scholar 

  • Dash PR, Read ML, Barrett LB et al (1999) Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 6:643–650

    Article  PubMed  CAS  Google Scholar 

  • Dileo J, Miller TE Jr, Chesnoy S et al (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther 14:79–87

    Article  PubMed  CAS  Google Scholar 

  • Donsante A, Miller DG, Li Y et al (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477

    Article  PubMed  CAS  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007–an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  • El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14

    Article  PubMed  CAS  Google Scholar 

  • El-Sayed A, Khalil IA, Kogure K et al (2008) Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape. J Biol Chem 283:23450–23461

    Article  PubMed  CAS  Google Scholar 

  • Emery DW, Yannaki E, Tubb J et al (2000) A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 97:9150–9155

    Article  PubMed  CAS  Google Scholar 

  • Erbacher P, Roche AC, Monsigny M et al (1996) Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Exp Cell Res 225:186–194

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D et al (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  PubMed  CAS  Google Scholar 

  • Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295

    Article  PubMed  Google Scholar 

  • Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337:387–388

    Article  PubMed  CAS  Google Scholar 

  • Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  • Ferber D (2001) Gene therapy. Safer and virus-free? Science 294:1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Ferrari A, Pellegrini V, Arcangeli C et al (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8:284–294

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Huang L (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 179:280–285

    Article  PubMed  CAS  Google Scholar 

  • Gautam A, Densmore CL, Xu B et al (2000) Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery. Mol Ther 2:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ge Q, Filip L, Bai A et al (2004) Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 101:8676–8681

    Article  PubMed  CAS  Google Scholar 

  • Giering JC, Grimm D, Storm TA et al (2008) Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 16:1630–1636

    Article  PubMed  CAS  Google Scholar 

  • Giladi H, Ketzinel-Gilad M, Rivkin L et al (2003) Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther 8:769–776

    Article  PubMed  CAS  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149–160

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DA, Tinland B, Gilbertson LA et al (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 99:7–23

    Article  PubMed  CAS  Google Scholar 

  • Golzio M, Mazzolini L, Ledoux A et al (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14:752–759

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Huntsman C, Ma D (2008) Clathrin-independent internalization and recycling. J Cell Mol Med 12:126–144

    Article  PubMed  CAS  Google Scholar 

  • Goula D, Remy JS, Erbacher P et al (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5:712–717

    Article  PubMed  CAS  Google Scholar 

  • Goverdhana S, Puntel M, Xiong W et al (2005) Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 12:189–211

    Article  PubMed  CAS  Google Scholar 

  • Grayson AC, Doody AM, Putnam D (2006) Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res 23:1868–1876

    Article  PubMed  CAS  Google Scholar 

  • Green NK, Morrison J, Hale S et al (2008) Retargeting polymer-coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer. J Gene Med 10:280–289

    Article  PubMed  CAS  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  • Gregory RI, Chendrimada TP, Shiekhattar R (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342:33–47

    PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  • Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ (1997) Flexibility of RNA. Annu Rev Biophys Biomol Struct 26:139–156

    Article  PubMed  CAS  Google Scholar 

  • Hall AH, Wan J, Shaughnessy EE et al (2004) RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000

    Article  PubMed  CAS  Google Scholar 

  • Harris J, Werling D, Hope JC et al (2002) Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol 23:158–164

    Article  PubMed  CAS  Google Scholar 

  • Hart SL, Collins L, Gustafsson K et al (1997) Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains. Gene Ther 4:1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Hart SL, Arancibia-Carcamo CV, Wolfert MA et al (1998) Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther 9:575–585

    Article  PubMed  CAS  Google Scholar 

  • Heil F, Ahmad-Nejad P, Hemmi H et al (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987–2997

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  PubMed  CAS  Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  PubMed  CAS  Google Scholar 

  • Howard KA, Rahbek UL, Liu X et al (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14:476–484

    Article  PubMed  CAS  Google Scholar 

  • Hoyer J, Neundorf I (2012) Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res 45:1048–1056

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  • Jackson AL, Burchard J, Leake D et al (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Jagannath A, Wood MJ (2009) Localization of double-stranded small interfering RNA to cytoplasmic processing bodies is Ago2 dependent and results in up-regulation of GW182 and Argonaute-2. Mol Biol Cell 20:521–529

    Article  PubMed  CAS  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T et al (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Jans DA, Hubner S (1996) Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 76:651–685

    PubMed  CAS  Google Scholar 

  • Jenkins RG, McAnulty RJ, Hart SL et al (2003) Pulmonary gene therapy. Realistic hope for the future, or false dawn in the promised land? Monaldi Arch Chest Dis 59:17–24

    PubMed  CAS  Google Scholar 

  • Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  PubMed  CAS  Google Scholar 

  • John M, Constien R, Akinc A et al (2007) Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449:745–747

    Article  PubMed  CAS  Google Scholar 

  • Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  PubMed  CAS  Google Scholar 

  • Judge AD, Bola G, Lee AC et al (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  PubMed  CAS  Google Scholar 

  • Kaneda Y, Iwai K, Uchida T (1989) Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 243:375–378

    Article  PubMed  CAS  Google Scholar 

  • Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    Article  PubMed  CAS  Google Scholar 

  • Kay MA, Liu D, Hoogerbrugge PM (1997) Gene therapy. Proc Natl Acad Sci USA 94:12744–12746

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Futaki S, Niwa M et al (2004) Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Ther 11:636–644

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Kogure K, Akita H et al (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 58:32–45

    Article  PubMed  CAS  Google Scholar 

  • Kichler A, Leborgne C, Coeytaux E et al (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 3:135–144

    Article  PubMed  CAS  Google Scholar 

  • Kim HH, Choi HS, Yang JM et al (2007) Characterization of gene delivery in vitro and in vivo by the arginine peptide system. Int J Pharm 335:70–78

    Article  PubMed  CAS  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Kircheis R, Schuller S, Brunner S et al (1999) Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1:111–120

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Bock CT, Wedemeyer H et al (2003) Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology 125:9–18

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Nishikawa M, Hirata K et al (2004) Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med 6:584–592

    Article  PubMed  CAS  Google Scholar 

  • Koide H, Asai T, Hatanaka K et al (2010) T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int J Pharm 392:218–223

    Article  PubMed  CAS  Google Scholar 

  • Kopatz I, Remy JS, Behr JP (2004) A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 6:769–776

    Article  PubMed  CAS  Google Scholar 

  • Koping-Hoggard M, Tubulekas I, Guan H et al (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    Article  PubMed  CAS  Google Scholar 

  • Kreppel F, Kochanek S (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 16:16–29

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo JF, Chen C, Eichman J et al (1999) Enhancement of dendrimer-mediated transfection using synthetic lung surfactant exosurf neonatal in vitro. Biochem Biophys Res Commun 264:253–261

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    Article  PubMed  CAS  Google Scholar 

  • Kwoh DY, Coffin CC, Lollo CP et al (1999) Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta 1444:171–190

    Article  PubMed  CAS  Google Scholar 

  • Kwok A, Hart SL (2011) Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 7:210–219

    Article  PubMed  CAS  Google Scholar 

  • Landen CN Jr, Chavez-Reyes A, Bucana C et al (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65:6910–6918

    Article  PubMed  CAS  Google Scholar 

  • Larson SD, Jackson LN, Chen LA et al (2007) Effectiveness of siRNA uptake in target tissues by various delivery methods. Surgery 142:262–269

    Article  PubMed  Google Scholar 

  • Lee RJ, Huang L (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 271:8481–8487

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Kwon IC, Kim YH et al (1998) Preparation of chitosan self-aggregates as a gene delivery system. J Control Release 51:213–220

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Chuang TH, Redecke V et al (2003) Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA 100:6646–6651

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Scaria P, Lu P et al (2008) Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther 15:485–495

    Article  PubMed  CAS  Google Scholar 

  • Leung RK, Whittaker PA (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107:222–239

    Article  PubMed  CAS  Google Scholar 

  • Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    Article  PubMed  CAS  Google Scholar 

  • Li CX, Parker A, Menocal E et al (2006) Delivery of RNA interference. Cell Cycle 5:2103–2109

    Article  PubMed  CAS  Google Scholar 

  • Li SD, Chono S, Huang L (2008) Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 16:942–946

    Article  PubMed  CAS  Google Scholar 

  • Lian S, Jakymiw A, Eystathioy T et al (2006) GW bodies, microRNAs and the cell cycle. Cell Cycle 5:242–245

    Article  PubMed  CAS  Google Scholar 

  • Love KT, Mahon KP, Levins CG et al (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 107:1864–1869

    Article  PubMed  CAS  Google Scholar 

  • Lundberg M, Wikstrom S, Johansson M (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol Ther 8:143–150

    Article  PubMed  CAS  Google Scholar 

  • Ma JB, Yuan YR, Meister G et al (2005a) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Li J, He F et al (2005b) Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 330:755–759

    Article  PubMed  CAS  Google Scholar 

  • Marshall E (2000) Improving gene therapy’s tool kit. Science 288:953

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Johnson LG, Randell SH et al (1997) Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J Biol Chem 272:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Matveev S, Li X, Everson W et al (2001) The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Adv Drug Deliv Rev 49:237–250

    Article  PubMed  CAS  Google Scholar 

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  CAS  Google Scholar 

  • McBride JL, Boudreau RL, Harper SQ et al (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 105:5868–5873

    Article  PubMed  CAS  Google Scholar 

  • McLachlan G, Davidson DJ, Stevenson BJ et al (1995) Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy. Gene Ther 2:614–622

    PubMed  CAS  Google Scholar 

  • Meier O, Greber UF (2003) Adenovirus endocytosis. J Gene Med 5:451–462

    Article  PubMed  CAS  Google Scholar 

  • Melchior F, Gerace L (1995) Mechanisms of nuclear protein import. Curr Opin Cell Biol 7:310–318

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Wagner E (2006) Recent developments in the application of plasmid DNA-based vectors and small interfering RNA therapeutics for cancer. Hum Gene Ther 17:1062–1076

    Article  PubMed  CAS  Google Scholar 

  • Minakuchi Y, Takeshita F, Kosaka N et al (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32:e109

    Article  PubMed  Google Scholar 

  • Monahan PE, Jooss K, Sands MS (2002) Safety of adeno-associated virus gene therapy vectors: a current evaluation. Expert Opin Drug Saf 1:79–91

    Article  PubMed  CAS  Google Scholar 

  • Morille M, Passirani C, Vonarbourg A et al (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496

    Article  PubMed  CAS  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T et al (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM (2004) Lehninger principles of biochemistry, 4th edn. W. H. Freeman and Co., New York, NY

    Google Scholar 

  • Newman CM, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  PubMed  CAS  Google Scholar 

  • Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–4714

    Article  PubMed  CAS  Google Scholar 

  • Ogris M, Carlisle RC, Bettinger T et al (2001) Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J Biol Chem 276:47550–47555

    Article  PubMed  CAS  Google Scholar 

  • Okamura K, Hagen JW, Duan H et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  • Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Patil ML, Zhang M, Betigeri S et al (2008) Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem 19:1396–1403

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483

    Article  PubMed  CAS  Google Scholar 

  • Perales JC, Grossmann GA, Molas M et al (1997) Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem 272:7398–7407

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    Article  PubMed  CAS  Google Scholar 

  • Preall JB, He Z, Gorra JM et al (2006) Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Curr Biol 16:530–535

    Article  PubMed  CAS  Google Scholar 

  • Ramsay E, Hadgraft J, Birchall J et al (2000) Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in-vitro. Int J Pharm 210:97–107

    Article  PubMed  CAS  Google Scholar 

  • Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  PubMed  CAS  Google Scholar 

  • Read ML, Singh S, Ahmed Z et al (2005) A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res 33:e86

    Article  PubMed  CAS  Google Scholar 

  • Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E et al (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  • Robbins M, Judge A, Ambegia E et al (2008) Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther 19:991–999

    Article  PubMed  CAS  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Mazda O, Takahashi KA et al (2007) Sonoporation mediated transduction of pDNA/siRNA into joint synovium in vivo. J Orthop Res 25:1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Schaffer DV, Lauffenburger DA (1998) Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J Biol Chem 273:28004–28009

    Article  PubMed  CAS  Google Scholar 

  • Schaffer DV, Fidelman NA, Dan N et al (2000) Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng 67:598–606

    Article  PubMed  CAS  Google Scholar 

  • Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548

    Article  PubMed  CAS  Google Scholar 

  • Selkirk SM (2004) Gene therapy in clinical medicine. Postgrad Med J 80:560–570

    Article  PubMed  CAS  Google Scholar 

  • Semple SC, Akinc A, Chen J et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28:172–176

    Article  PubMed  CAS  Google Scholar 

  • Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636

    Article  PubMed  CAS  Google Scholar 

  • Simoes S, Slepushkin V, Pires P et al (1999) Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther 6:1798–1807

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Tian B, Kostarelos K (2008) Artificial envelopment of nonenveloped viruses: enhancing adenovirus tumor targeting in vivo. FASEB J 22:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Sioud M, Sorensen DR (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 312:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Graf GA, McNiven MA et al (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    PubMed  CAS  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  • Sternberg B, Hong K, Zheng W, Papahadjopoulos D (1998) Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta 1375:23–35

    Article  PubMed  CAS  Google Scholar 

  • Stoll SM, Sclimenti CR, Baba EJ et al (2001) Epstein-Barr virus/human vector provides high-level, long-term expression of alpha1-antitrypsin in mice. Mol Ther 4:122–129

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Nishida K, Kakutani K et al (2009) Sustained long-term RNA interference in nucleus pulposus cells in vivo mediated by unmodified small interfering RNA. Eur Spine J 18:263–270

    Article  PubMed  Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Article  PubMed  CAS  Google Scholar 

  • Tagalakis AD, Grosse SM, Meng QH et al (2011a) Integrin-targeted nanocomplexes for tumour specific delivery and therapy by systemic administration. Biomaterials 32:1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Tagalakis AD, He L, Saraiva L et al (2011b) Receptor-targeted liposome-peptide nanocomplexes for siRNA delivery. Biomaterials 32:6302–6315

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385–391

    Article  PubMed  CAS  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  PubMed  CAS  Google Scholar 

  • Thoren PE, Persson D, Isakson P et al (2003) Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem Biophys Res Commun 307:100–107

    Article  PubMed  CAS  Google Scholar 

  • Thornhill SI, Schambach A, Howe SJ et al (2008) Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 16:590–598

    Article  PubMed  CAS  Google Scholar 

  • Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB et al (2005) Failure of SCID-X1 gene therapy in older patients. Blood 105:4255–4257

    Article  PubMed  CAS  Google Scholar 

  • Tomari Y, Matranga C, Haley B et al (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Toub N, Malvy C, Fattal E et al (2006) Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother 60:607–620

    Article  PubMed  CAS  Google Scholar 

  • Trehin R, Merkle HP (2004) Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 58:209–223

    Article  PubMed  CAS  Google Scholar 

  • Uchida H, Tanaka T, Sasaki K et al (2004) Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 10:162–171

    Article  PubMed  CAS  Google Scholar 

  • Urban-Klein B, Werth S, Abuharbeid S et al (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12:461–466

    Article  PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  • Verma IM, Somia N (1997) Gene therapy—promises, problems and prospects. Nature 389:239–242

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen A, Behlen L, Reynolds A et al (2005) The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11:674–682

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Plank C, Zatloukal K et al (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA 89:7934–7938

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Huang L (1987) pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci USA 84:7851–7855

    Article  PubMed  CAS  Google Scholar 

  • Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116:255–264

    Article  PubMed  CAS  Google Scholar 

  • Weinberg MS, Wood MJ (2009) Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 18:R27–R39

    Article  PubMed  CAS  Google Scholar 

  • Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  PubMed  CAS  Google Scholar 

  • Wienhues U, Hosokawa K, Hoveler A et al (1987) A novel method for transfection and expression of reconstituted DNA-protein complexes in eukaryotic cells. DNA 6:81–89

    Article  PubMed  CAS  Google Scholar 

  • Williams DA, Baum C (2003) Medicine. Gene therapy–new challenges ahead. Science 302:400–401

    Article  PubMed  CAS  Google Scholar 

  • Wilusz CJ, Wilusz J (2004) Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet 20:491–497

    Article  PubMed  CAS  Google Scholar 

  • Winkler KE (2004) Killing the messenger. Nat Rev Drug Discov 3:823–824

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

  • Wrobel I, Collins D (1995) Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim Biophys Acta 1235:296–304

    Article  PubMed  Google Scholar 

  • Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262:4429–4432

    PubMed  CAS  Google Scholar 

  • Xia H, Mao Q, Eliason SL et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Wiehle S, Roth JA et al (1998) The contribution of poly-L-lysine, epidermal growth factor and streptavidin to EGF/PLL/DNA polyplex formation. Gene Ther 5:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zauner W, Kichler A, Schmidt W et al (1997) Glycerol and polylysine synergize in their ability to rupture vesicular membranes: a mechanism for increased transferrin-polylysine-mediated gene transfer. Exp Cell Res 232:137–145

    Article  PubMed  CAS  Google Scholar 

  • Zeira E, Manevitch A, Khatchatouriants A et al (2003) Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 8:342–350

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Gao X, Song YK et al (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11:675–682

    Article  PubMed  CAS  Google Scholar 

  • Zheng JN, Pei DS, Mao LJ et al (2009) Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther 16:20–32

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee AC, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  PubMed  CAS  Google Scholar 

  • Zuhorn IS, Bakowsky U, Polushkin E et al (2005) Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 11:801–810

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Kwok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kwok, A. (2013). The Challenges and Current Advances in Delivering RNAi as Therapeutics. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_8

Download citation

Publish with us

Policies and ethics