Skip to main content

8 Biology, Diversity, and Management of FHB-Causing Fusarium Species in Small-Grain Cereals

  • Chapter
  • First Online:
Book cover Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Fusarium head blight (FHB) is an important cereal ear disease, with potential for provoking high economic losses. In addition to causing reductions in grain yield and quality, FHB fungi accumulate a variety of mycotoxins in the grain. Depending on the particular mycotoxins produced, consequences for the health of humans and farm animals may include irritations such as nausea, emesis, diarrhoea, and anorexia, and may affect reproductive organs. Even worse are their hepatotoxic, haematotoxic, immunotoxic, genotoxic and, presumably, cancerogenic attributes. Therefore, FHB management is essential and needs to be directed towards reducing mycotoxin contamination to the lowest levels possible. FHB is caused by a complex of about 17 species that differ, among other factors, in mycotoxin profiles and geographic prevalence. This review presents achievements accomplished in the taxonomy and population biology of FHB fungi that are instrumental for surveying and counteracting these pathogens. Furthermore, we focus on current agronomic practices and progress made in breeding FHB-resistant wheat varieties to control this sometimes devastating cereal disease.

*These authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinelli AM, Clark AJ, Brown-Guedira G, Van Sanford DA (2012) Optimizing phenotypic and genotypic selection for Fusarium head blight resistance in wheat. Euphytica 186:115–126

    Google Scholar 

  • Ahamed S, Foster JS, Bukovsky A, Wimalasena J (2001) Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinog 30:88–98

    CAS  PubMed  Google Scholar 

  • Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215

    CAS  Google Scholar 

  • Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495

    CAS  PubMed  Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    CAS  PubMed  Google Scholar 

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    CAS  Google Scholar 

  • Arseniuk E, Goral T, Czembor HJ (1993) Reaction of triticale, wheat and rye accessions to gramineous Fusarium spp. infection at the seedling and adult plant growth stages. Euphytica 70:175–183

    Google Scholar 

  • Atanasoff D (1920) The Fusarium blight (scab) of wheat and other cereals. Dissertation, Plant Pathology, University of Wisconsin, Madison

    Google Scholar 

  • Audenaert K, Van Broeck R, Bekaert B, De Witte F, Heremans B, Messens K, Hofte M, Haesaert G (2009) Fusarium head blight (FHB) in Flanders: population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. Eur J Plant Pathol 125:445–458

    Google Scholar 

  • Bahrini I, Sugisawa M, Kikuchi R, Ogawa T, Kawahigashi H, Ban T, Handa H (2011) Characterization of a wheat transcription factor, TaWRKY45, and its effect on Fusarium head blight resistance in transgenic wheat plants. Breed Sci 61:121–129

    CAS  Google Scholar 

  • Bai GH, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    CAS  PubMed  Google Scholar 

  • Bai GH, Chen LF, Shaner G (2003) Breeding for resistance to Fusarium head blight of wheat in China. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 296–317

    Google Scholar 

  • Balconi C, Lanzanova C, Conti E, Triulzi T, Forlani F, Cattaneo M, Lupotto E (2007) Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene. Eur J Plant Pathol 117:129–140

    CAS  Google Scholar 

  • Beccari G, Covarelli L, Nicholson P (2011) Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol 60:671–684

    CAS  Google Scholar 

  • Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR (2010) Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology 100:444–453

    CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    CAS  PubMed  Google Scholar 

  • Berube ME, Vanasse A, Rioux S, Bourget N, Dion Y, Tremblay G (2012) Effect of glyphosate on Fusarium head blight in wheat and barley under different soil tillages. Plant Dis 96:338–344

    CAS  Google Scholar 

  • Beyer M, Roding S, Ludewig A, Verreet JA (2004) Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. J Phytopathol 152:92–97

    Google Scholar 

  • Beyer M, Klix MB, Klink H, Verreet JA (2006) Quantifying the effects of previous crop, tillage, cultivar and triazole fungicides on the deoxynivalenol content of wheat grain – a review. J Plant Dis Prot 113:241–246

    CAS  Google Scholar 

  • Birzele B, Meier A, Hindorf H, Kramer J, Dehne HW (2002) Epidemiology of Fusarium infection and deoxynivalenol content in winter wheat in the Rhineland, Germany. Eur J Plant Pathol 108:667–673

    CAS  Google Scholar 

  • Blandino M, Pilati A, Reyneri A, Scudellari D (2010) Effect of maize crop residue density on Fusarium head blight and on deoxynivalenol contamination of common wheat grains. Cereal Res Commun 38:550–559

    CAS  Google Scholar 

  • Blandino M, Haidukowski M, Pascale M, Plizzari L, Scudellari D, Reyneri A (2012) Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crop Res 133:139–149

    Google Scholar 

  • Boenisch MJ, Schäfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110

    CAS  PubMed  Google Scholar 

  • Bowden RL, Leslie JF (1994) Diversity of Gibberella zeae at small spatial scales. Phytopathology 84:1140

    Google Scholar 

  • Bowden RL, Leslie JF (1999) Sexual recombination in Gibberella zeae. Phytopathology 89:182–188

    CAS  PubMed  Google Scholar 

  • Boyacioglu D, Hettiarachchy NS (1995) Changes in some biochemical components of wheat grain that was infected with Fusarium graminearum. J Cereal Sci 21:57–62

    CAS  Google Scholar 

  • Brown NA, Urban M, van de Meene AM, Hammond-Kosack KE (2010) The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol 114:555–571

    PubMed  Google Scholar 

  • Buerstmayr H, Lemmens M, Grausgruber H, Ruckenbauer P (1996) Scab resistance of international wheat germplasm. Cereal Res Commun 24:195–202

    Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    CAS  PubMed  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003a) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    CAS  PubMed  Google Scholar 

  • Buerstmayr H, Stierschneider M, Steiner B, Lemmens M, Griesser M, Nevo E, Fahima T (2003b) Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130:17–23

    Google Scholar 

  • Buerstmayr H, Lemmens M, Schmolke M, Zimmermann G, Hartl L, Mascher F, Trottet M, Gosman NE, Nicholson P (2008) Multi-environment evaluation of level and stability of FHB resistance among parental lines and selected offspring derived from several European winter wheat mapping populations. Plant Breed 127:325–332

    Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    CAS  Google Scholar 

  • Burgess LW, Dodman RL, Pont W, Mayers P (1981) Fusarium diseases of wheat, maize, and grain sorghum in Eastern Australia. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium – diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 64–76

    Google Scholar 

  • Burlakoti RR, Ali S, Secor GA, Neate SM, McMullen MP, Adhikari TB (2008) Genetic relationships among populations of Gibberella zeae from barley, wheat, potato, and sugar beet in the upper Midwest of the United States. Phytopathology 98:969–976

    CAS  PubMed  Google Scholar 

  • Bushnell WR, Hazen BE, Pritsch C (2003) Histology and physiology of Fusarium head blight. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 44–83

    Google Scholar 

  • Büttner P (2006) Das Artenspektrum der Gattung Fusarium an Weizen und Roggen in Bayern in den Jahren 2003–2004. Gesunde Pflanzen 58:28–33

    Google Scholar 

  • Cai L, Giraud T, Zhang N, Begerow D, Cai GH, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133

    Google Scholar 

  • Carter JP, Rezanoor HN, Holden D, Desjardins AE, Plattner RD, Nicholson P (2002) Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur J Plant Pathol 108:573–583

    CAS  Google Scholar 

  • Chakraborty S, Liu CJ, Mitter V, Scott JB, Akinsanmi OA, Ali S, Dill-Macky R, Nicol J, Backhouse D, Simpfendorfer S (2006) Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australas Plant Pathol 35:643–655

    Google Scholar 

  • Champeil A, Dore T, Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166:1389–1415

    CAS  Google Scholar 

  • Chandelier A, Nimal C, Andre F, Planchon V, Oger R (2011) Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period (2003–2009) in Belgium. Eur J Plant Pathol 130:403–414

    Google Scholar 

  • Chen Y, Zhou MG (2009a) Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new Fungicide JS399-19. Phytopathology 99:441–446

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhou MG (2009b) Sexual recombination of carbendazim resistance in Fusarium graminearum under field conditions. Pest Manag Sci 65: 398–403

    CAS  PubMed  Google Scholar 

  • Chen LY, Tian XL, Yang B (1990) A study on the inhibition of rat myocardium glutathione-peroxidase and glutathione-reductase by moniliformin. Mycopathologia 110:119–124

    CAS  PubMed  Google Scholar 

  • Christ DS, Marlander B, Varrelmann M (2011) Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe. Phytopathology 101: 1330–1337

    CAS  PubMed  Google Scholar 

  • Conkova E, Laciakova A, Kovac G, Seidel H (2003) Fusarial toxins and their role in animal diseases. Vet J 165:214–220

    CAS  PubMed  Google Scholar 

  • Cook RJ (1981) Fusarium diseases of wheat and other small grains in North America. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium – diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 39–52

    Google Scholar 

  • Covarelli L, Beccari G, Steed A, Nicholson P (2012) Colonization of soft wheat following infection of the stem base by Fusarium culmorum and translocation of deoxynivalenol to the head. Plant Pathol. 61:1121–1129

    Google Scholar 

  • Cowger C, Sutton AL (2005) The Southeastern U.S. Fusarium head blight epidemic of 2003. Plant Health Prog. doi:10.1094/PHP-2005-1026-1001-RS

    Google Scholar 

  • Cumagun CJR, Miedaner T (2004) Segregation for aggressiveness and deoxynivalenol production of a population of Gibberella zeae causing head blight of wheat. Eur J Plant Pathol 110:789–799

    CAS  Google Scholar 

  • Cumagun CJR, Bowden RL, Jurgenson JE, Leslie JF, Miedaner T (2004) Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology 94:520–526

    CAS  PubMed  Google Scholar 

  • Cuthbert PA, Somers DJ, Brule-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    CAS  PubMed  Google Scholar 

  • Dahleen LS, Okubara PA, Blechl AE (2001) Transgenic approaches to combat Fusarium head blight in wheat and barley. Crop Sci 41:628–637

    Google Scholar 

  • de Luna L, Bujold I, Carisse O, Paulitz TC (2002) Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Can J Plant Pathol 24:457–464

    Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics, and biology. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50

    CAS  PubMed  Google Scholar 

  • Desjardins AE, Proctor RH (2011) Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biol 115:38–48

    CAS  PubMed  Google Scholar 

  • Desjardins AE, Manandhar HK, Plattner RD, Manandhar GG, Poling SM, Maragos CM (2000) Fusarium species from nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol 66:1020–1025

    CAS  PubMed  Google Scholar 

  • Desmond OJ, Manners JM, Stephens AE, MaClean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9:435–445

    CAS  PubMed  Google Scholar 

  • Di R, Blechl A, Dill-Macky R, Tortora A, Tumer NE (2010) Expression of a truncated form of yeast ribosomal protein L3 in transgenic wheat improves resistance to Fusarium head blight. Plant Sci 178:374–380

    CAS  Google Scholar 

  • Dill-Macky R, Jones RK (2000) The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84:71–76

    Google Scholar 

  • Doohan FM, Brennan J, Cooke BM (2003) Influence of climatic factors on Fusarium species pathogenic to cereals. Eur J Plant Pathol 109:755–768

    Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    CAS  PubMed  Google Scholar 

  • Dubin HJ, Ruckenbauer P (1997) Foreword. In: Dubin HJ, Gilchrist L, Reeves J, McNab A (eds) Fusarium head scab: global status and future prospects. CIMMYT, El Batan, Mexico, pp V–VI

    Google Scholar 

  • Dubos T, Pasquali M, Pogoda F, Hoffmann L, Beyer M (2011) Evidence for natural resistance towards trifloxystrobin in Fusarium graminearum. Eur J Plant Pathol 130:239–248

    Google Scholar 

  • Dufault NS, De Wolf ED, Lipps PE, Madden LV (2006) Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Dis 90:637–644

    Google Scholar 

  • Dusabenyagasani M, Dostaler D, Hamelin RC (1999) Genetic diversity among Fusarium graminearum strains from Ontario and Quebec. Can J Plant Pathol 21:308–314

    Google Scholar 

  • Edwards SG (2004) Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol Lett 153:29–35

    CAS  PubMed  Google Scholar 

  • Edwards SG, Godley NP (2010) Reduction of Fusarium head blight and deoxynivalenol in wheat with early fungicide applications of prothioconazole. Food Addit Contam A 27:629–635

    CAS  Google Scholar 

  • Eiblmeier P, von Gleissenthall JL (2007) Risk evaluation of deoxynivalenol levels in Bavarian wheat from survey data. J Plant Dis Prot 114:69–75

    CAS  Google Scholar 

  • Fakhfakh MM, Yahyaoui A, Rezgui S, Elias EM, Daaloul A (2011) Identification and pathogenicity assessment of Fusarium spp. sampled from durum wheat fields in Tunisia. Afr J Biotechnol 10:6529–6539

    Google Scholar 

  • Fauzi MT, Paulitz TC (1994) The effect of plant-growth regulators and nitrogen on Fusarium head blight of the spring wheat cultivar max. Plant Dis 78:289–292

    Google Scholar 

  • Feinberg B, McLaughlin CS (1989) Biochemical mechanism of action of trichocenene mycotoxins. CRC Press, Boca Raton

    Google Scholar 

  • Fernandez MR, Zentner RP, Basnyat P, Gehl D, Selles F, Huber D (2009) Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian prairies. Eur J Agron 31:133–143

    CAS  Google Scholar 

  • Fernando WGD, Miller JD, Seaman WL, Seifert K, Paulitz TC (2000) Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Can J Bot 78:497–505

    Google Scholar 

  • Fernando WGD, Zhang JX, Dusabenyagasani M, Guo XW, Ahmed H, McCallum B (2006) Genetic diversity of Gibberella zeae isolates from Manitoba. Plant Dis 90:1337–1342

    CAS  Google Scholar 

  • Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D’Ovidio R (2012) Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14(Suppl 1):31–38

    CAS  PubMed  Google Scholar 

  • Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    CAS  PubMed  Google Scholar 

  • Foroud NA, McCormick S, MacMillan T, Badea A, Kendra DF, Ellis BE, Eudes F (2012) Greenhouse studies reveal increased aggressiveness of emergent Canadian Fusarium graminearum chemotypes in wheat. Plant Dis 96:1271–1279

    Google Scholar 

  • Francl L, Shaner G, Bergstrom G, Gilbert J, Pedersen W, Dill-Macky R, Sweets L, Corwin B, Jin Y, Gallenberg D, Wiersma J (1999) Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Dis 83:662–666

    Google Scholar 

  • Gale LR, Chen LF, Hernick CA, Takamura K, Kistler HC (2002) Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 92:1315–1322

    CAS  PubMed  Google Scholar 

  • Gale LR, Ward TJ, Balmas V, Kistler HC (2007) Population subdivision of Fusarium graminearum sensu stricto in the Upper Midwestern United States. Phytopathology 97:1434–1439

    CAS  PubMed  Google Scholar 

  • Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–134

    CAS  PubMed  Google Scholar 

  • Gang G, Miedaner T, Schuhmacher U, Schollenberger M, Geiger HH (1998) Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology 88:879–884

    CAS  PubMed  Google Scholar 

  • Gardiner SA, Boddu J, Berthiller F, Hametner C, Stupar RM, Adam G, Muehlbauer GJ (2010) Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. Mol Plant Microbe Interact 23:962–976

    CAS  PubMed  Google Scholar 

  • Gareis M, Ceynowa J (1994) Effect of the fungicide matador (tebuconazole/triadimenol) on mycotoxin production by Fusarium culmorum. Z Lebensm Unters Forsch 198:244–248

    CAS  PubMed  Google Scholar 

  • Gilbert J, Tekauz A (2000) Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol 22:1–8

    Google Scholar 

  • Gilbert J, Woods SM, Kromer U (2008) Germination of ascospores of Gibberella zeae after exposure to various levels of relative humidity and temperature. Phytopathology 98:504–508

    CAS  PubMed  Google Scholar 

  • Giraud T, Refregier G, Le Gac M, de Vienne DM, Hood ME (2008) Speciation in fungi. Fungal Genet Biol 45:791–802

    CAS  PubMed  Google Scholar 

  • Giraud F, Pasquali M, El Jarroudi M, Vrancken C, Brochot C, Cocco E, Hoffmann L, Delfosse P, Bohn T (2010) Fusarium head blight and associated mycotoxin occurrence on winter wheat in Luxembourg in 2007/2008. Food Addit Contam A 27:825–835

    CAS  Google Scholar 

  • Gosman N, Bayles R, Jennings P, Kirby J, Nicholson P (2007) Evaluation and characterization of resistance to Fusarium head blight caused by Fusarium culmorum in UK winter wheat cultivars. Plant Pathol 56:264–276

    CAS  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    CAS  PubMed  Google Scholar 

  • Guenther JC, Trail F (2005) The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia 97:229–237

    PubMed  Google Scholar 

  • Guo XW, Fernando WGD, Seow-Brock HY (2008) Population structure, chemotype diversity, and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Dis 92:756–762

    CAS  Google Scholar 

  • Häberle J, Schmolke M, Schweizer G, Korzun V, Ebmeyer E, Zimmermann G, Hartl L (2007) Effects of two major Fusarium head blight resistance QTL verified in a winter wheat backcross population. Crop Sci 47:1823–1831

    Google Scholar 

  • Häberle J, Holzapfel J, Schweizer G, Hartl L (2009) A major QTL for resistance against Fusarium head blight in European winter wheat. Theor Appl Genet 119:325–332

    PubMed  Google Scholar 

  • Han J, Lakshman DK, Galvez LC, Mitra S, Baenziger PS, Mitra A (2012) Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol 12:33

    CAS  PubMed  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hasan MM, Rahman SM, Kim GH, Abdallah E, Oh DH (2012) Antagonistic potentiality of Trichoderma harzianum towards seed-borne fungal pathogens of winter wheat cv. protiva in vitro and in vivo. J Microbiol Biotechnol 22:585–591

    CAS  PubMed  Google Scholar 

  • He J, Boland GJ, Zhou T (2009) Concurrent selection for microbial suppression of Fusarium graminearum, Fusarium head blight and deoxynivalenol in wheat. J Appl Microbiol 106:1805–1817

    CAS  PubMed  Google Scholar 

  • Heier T, Jain SK, Kogel KH, Pons-Kuhnemann J (2005) Influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. J Phytopathol 153:551–557

    CAS  Google Scholar 

  • Hogg AC, Johnston RH, Dyer AT (2007) Applying real-time quantitative PCR to Fusarium crown rot of wheat. Plant Dis 91:1021–1028

    CAS  Google Scholar 

  • Holzapfel J, Voss HH, Miedaner T, Korzun V, Haberle J, Schweizer G, Mohler V, Zimmermann G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117:1119–1128

    PubMed  Google Scholar 

  • Horberg HM (2002) Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. Eur J Plant Pathol 108:73–80

    Google Scholar 

  • Huhn MR, Elias EM, Ghavami F, Kianian SF, Chao SM, Zhong SB, Alamri MS, Yahyaoui A, Mergoum M (2012) Tetraploid Tunisian wheat germplasm as a new source of Fusarium head blight resistance. Crop Sci 52:136–145

    Google Scholar 

  • Imathiu SM, Hare MC, Ray RV, Back M, Edwards SG (2010) Evaluation of pathogenicity and aggressiveness of F. langsethiae on oat and wheat seedlings relative to known seedling blight pathogens. Eur J Plant Pathol 126:203–216

    Google Scholar 

  • Inch S, Gilbert J (2003) The incidence of Fusarium species recovered from inflorescences of wild grasses in southern Manitoba. Can J Plant Pathol 25:379–383

    Google Scholar 

  • Inch S, Fernando WGD, Gilbert J (2005) Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Can J Plant Pathol 27:357–363

    Google Scholar 

  • Ioos R, Belhadj A, Menez M (2004) Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia 158:351–362

    PubMed  Google Scholar 

  • Isebaert S, De Saeger S, Devreese R, Verhoeven R, Maene P, Heremans B, Haesaert G (2009) Mycotoxin-producing Fusarium species occurring in winter wheat in Belgium (Flanders) during 2002–2005. J Phytopathol 157:108–116

    CAS  Google Scholar 

  • Jansen C, von Wettstein D, Schäfer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA 102:16892–16897

    CAS  PubMed  Google Scholar 

  • Jenkinson P, Parry DW (1994a) Isolation of Fusarium species from common broad-leaved weeds and their pathogenicity to winter wheat. Mycol Res 98:776–780

    Google Scholar 

  • Jenkinson P, Parry DW (1994b) Splash dispersal of conidia of Fusarium culmorum and Fusarium avenaceum. Mycol Res 98:506–510

    Google Scholar 

  • Jennings P, Coates ME, Walsh K, Turner JA, Nicholson P (2004) Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol 53:643–652

    CAS  Google Scholar 

  • Jestoi M (2008) Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin – a review. Crit Rev Food Sci 48:21–49

    CAS  Google Scholar 

  • Jochum CC, Osborne LE, Yuen GY (2006) Fusarium head blight biological control with Lysobacter enzymogenes. Biol Control 39:336–344

    Google Scholar 

  • Johnson DD, Flaskerud GK, Taylor RD, Satyanarayana V (2003) Quantifying economic impacts of Fusarium head blight in wheat. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 461–483

    Google Scholar 

  • Jones RK (1999) Seedling blight development and control in spring wheat damaged by Fusarium graminearum group 2. Plant Dis 83:1013–1018

    CAS  Google Scholar 

  • Jones RK (2000) Assessments of Fusarium head blight of wheat and barley in response to fungicide treatment. Plant Dis 84:1021–1030

    CAS  Google Scholar 

  • Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agric 89:549–554

    CAS  Google Scholar 

  • Kamyar M, Rawnduzi P, Studenik CR, Kouri K, Lemmens-Gruber R (2004) Investigation of the electrophysiological properties of enniatins. Arch Biochem Biophys 429:215–223

    CAS  PubMed  Google Scholar 

  • Kang ZS, Buchenauer H (2000) Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol Res 104:1083–1093

    Google Scholar 

  • Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91:491–504

    CAS  PubMed  Google Scholar 

  • Karugia GW, Suga H, Gale LR, Nakajima T, Tomimura K, Hyakumachi M (2009a) Population structure of the Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Dis 93:170–174

    CAS  Google Scholar 

  • Karugia GW, Suga H, Gale LR, Nakajima T, Ueda A, Hyakumachi M (2009b) Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J Gen Plant Pathol 75:110–118

    Google Scholar 

  • Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13:399–413

    CAS  PubMed  Google Scholar 

  • Keller MD, Waxman KD, Bergstrom GC, Schmale DG (2010) Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Dis 94:1151–1155

    Google Scholar 

  • Khan MR, Doohan FM (2009) Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol Control 48:42–47

    Google Scholar 

  • Khan NI, Schisler DA, Boehm MJ, Slininger PJ, Bothast RJ (2001) Selection and evaluation of microorganisms for biocontrol of Fusarium head blight of wheat incited by Gibberella zeae. Plant Dis 85:1253–1258

    Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    CAS  PubMed  Google Scholar 

  • Klix MB, Verreet JA, Beyer M (2007) Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Prot 26:683–690

    CAS  Google Scholar 

  • Koch HJ, Pringas C, Maerlaender B (2006) Evaluation of environmental and management effects on Fusarium head blight infection and deoxynivalenol concentration in the grain of winter wheat. Eur J Agron 24:357–366

    CAS  Google Scholar 

  • Kohn LM (2005) Mechanisms of fungal speciation. Annu Rev Phytopathol 43:279–308

    CAS  PubMed  Google Scholar 

  • Kosiak B, Torp M, Skjerve E, Thrane U (2003) The prevalence and distribution of Fusarium species in Norwegian cereals: a survey. Acta Agric Scand B Soil Plant Sci 53:168–176

    Google Scholar 

  • Kouri K, Lemmens M, Lemmens-Gruber R (2003) Beauvericin-induced channels in ventricular myocytes and liposomes. BBA-Biomembr 1609:203–210

    CAS  Google Scholar 

  • Kuiper-Goodman T, Scott PM, Watanabe H (1987) Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7:253–306

    CAS  PubMed  Google Scholar 

  • Kumar S, Stack RW, Friesen TL, Faris JD (2007) Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592–597

    CAS  PubMed  Google Scholar 

  • Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers 34:1–21

    Google Scholar 

  • Langevin F, Eudes F, Comeau A (2004) Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol 110:735–746

    Google Scholar 

  • Lee T, Han YK, Kim KH, Yun SH, Lee YW (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    CAS  PubMed  Google Scholar 

  • Lee J, Chang IY, Kim H, Yun SH, Leslie JF, Lee YW (2009) Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl Environ Microbiol 75:3289–3295

    CAS  PubMed  Google Scholar 

  • Lee J, Kim H, Jeon JJ, Kim HS, Zeller KA, Carter LL, Leslie JF, Lee YW (2012) Population structure and mycotoxin production of Fusarium graminearum from maize in Korea. Appl Environ Microbiol 78:2161–2167

    CAS  PubMed  Google Scholar 

  • Lemmens M, Haim K, Lew H, Ruckenbauer P (2004) The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. J Phytopathol 152:1–8

    Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    CAS  PubMed  Google Scholar 

  • Leslie JF, Bowden RL (2008) Fusarium graminearum: when species concepts collide. Cereal Res Commun 36:609–615

    Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Professional, Ames

    Google Scholar 

  • Leslie JF, Anderson LL, Bowden RL, Lee YW (2007) Inter- and intra-specific genetic variation in Fusarium. Int J Food Microbiol 119:25–32

    CAS  PubMed  Google Scholar 

  • Levesque CA, Rahe JE (1992) Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu Rev Phytopathol 30:579–602

    CAS  PubMed  Google Scholar 

  • Li HP, Zhang JB, Shi RP, Huang T, Fischer R, Liao YC (2008) Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol Plant Microbe Interact 21:1242–1248

    CAS  PubMed  Google Scholar 

  • Li YS, Wang ZH, Beier RC, Shen JZ, De Smet D, De Saeger S, Zhang SX (2011) T-2 Toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem 59:3441–3453

    CAS  PubMed  Google Scholar 

  • Lienemann K (2002) Auftreten von Fusarium-Arten an Winterweizen im Rheinland und Möglichkeiten der Befallskontrolle unter besonderer Berücksichtigung der Weizensorte. Dissertation, Institut für Pflanzenkrankheiten, Rheinische Friedrich-Wilhelms-Universität, Bonn

    Google Scholar 

  • Liu X, Fu J, Yun Y, Yin Y, Ma Z (2011) A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology 157:1665–1675

    CAS  PubMed  Google Scholar 

  • Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Google Scholar 

  • Logrieco A, Mule G, Moretti A, Bottalico A (2002) Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol 108:597–609

    CAS  Google Scholar 

  • Lori GA, Sisterna MN, Sarandon SJ, Rizzo I, Chidichimo H (2009) Fusarium head blight in wheat: impact of tillage and other agronomic practices under natural infection. Crop Prot 28:495–502

    Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis, and application. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Lu QX, Szabo-Hever A, Bjornstad A, Lillemo M, Semagn K, Mesterhazy A, Ji F, Shi JR, Skinnes H (2011) Two major resistance quantitative trait loci are required to counteract the increased susceptibility to Fusarium head blight of the Rht-D1b dwarfing gene in wheat. Crop Sci 51:2430–2438

    Google Scholar 

  • Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488

    CAS  PubMed  Google Scholar 

  • Magan N, Hope R, Colleate A, Baxter ES (2002) Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. Eur J Plant Pathol 108:685–690

    CAS  Google Scholar 

  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W (2006) Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461

    CAS  PubMed  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    CAS  PubMed  Google Scholar 

  • Maldonado-Ramirez SL, Schmale DG, Shields EJ, Bergstrom GC (2005) The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agric Forest Meteorol 132:20–27

    Google Scholar 

  • Mao SL, Wei YM, Cao W, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Google Scholar 

  • Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G (2012) Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98–106

    CAS  PubMed  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    CAS  PubMed  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Google Scholar 

  • Mesterhazy A (2002) Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur J Plant Pathol 108:675–684

    CAS  Google Scholar 

  • Mesterhazy A (2003) Control of Fusarium head blight of wheat by fungicides. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 363–380

    Google Scholar 

  • Mesterhazy A, Bartok T, Mirocha CG, Komoroczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    CAS  Google Scholar 

  • Miedaner T, Geiger HH (1996) Estimates of combining ability for resistance of winter rye to Fusarium culmorum head blight. Euphytica 89:339–344

    Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    PubMed  Google Scholar 

  • Miedaner T, Reinbrecht C (2001) Trichothecene content of rye and wheat genotypes inoculated with a deoxynivalenol- and a nivalenol-producing isolate of Fusarium culmorum. J Phytopathol 149:245–251

    CAS  Google Scholar 

  • Miedaner T, Schilling AG (1996) Genetic variation of aggressiveness in individual field populations of Fusarium graminearum and Fusarium culmorum tested on young plants of winter rye. Eur J Plant Pathol 102:823–830

    Google Scholar 

  • Miedaner T, Voss HH (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48:2115–2122

    Google Scholar 

  • Miedaner T, Ludwig WF, Geiger HH (1995) Inheritance of foot rot resistance in winter rye. Crop Sci 35:388–393

    Google Scholar 

  • Miedaner T, Gang G, Reinbrecht C, Geiger HH (1997) Lack of association between Fusarium foot rot and head blight resistance in winter rye. Crop Sci 37:327–331

    Google Scholar 

  • Miedaner T, Reinbrecht C, Schilling AG (2000) Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. J Plant Dis Prot 107:124–134

    CAS  Google Scholar 

  • Miedaner T, Schilling AG, Geiger HH (2001) Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. J Phytopathol 149:641–648

    CAS  Google Scholar 

  • Miedaner T, Moldovan M, Ittu M (2003a) Comparison of spray and point inoculation to assess resistance to Fusarium head blight in a multienvironment wheat trial. Phytopathology 93:1068–1072

    CAS  PubMed  Google Scholar 

  • Miedaner T, Schneider B, Geiger HH (2003b) Deoxynivalenol (DON) content and Fusarium head blight resistance in segregating populations of winter rye and winter wheat. Crop Sci 43:519–526

    CAS  Google Scholar 

  • Miedaner T, Schneider B, Oettler G (2006a) Means and variances for Fusarium head blight resistance of F-2-derived bulks from winter triticale and winter wheat crosses. Euphytica 152:405–411

    Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006b) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    CAS  PubMed  Google Scholar 

  • Miedaner T, Cumagun CJR, Chakraborty S (2008) Population genetics of three important head blight pathogens Fusarium graminearum F. pseudograminearum and F. culmorum. J Phytopathol 156:129–139

    Google Scholar 

  • Miedaner T, Wilde F, Korzun V, Ebmeyer E, Schmolke M, Hartl L, Schön CC (2009) Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica 166:219–227

    CAS  Google Scholar 

  • Miedaner T, Talas F, Longin F (2011) Sources of resistance to Fusarium head blight within Syrian durum wheat landraces. Plant Breed 130:398–400

    Google Scholar 

  • Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension-cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150

    CAS  Google Scholar 

  • Miller JD, Greenhalgh R, Wang YZ, Lu M (1991) Trichothecene chemotypes of 3 Fusarium species. Mycologia 83:121–130

    CAS  Google Scholar 

  • Mishra PK, Fox RTV, Culham A (2003) Inter-simple sequence repeat and aggressiveness analyses revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Ann Appl Biol 143:291–301

    CAS  Google Scholar 

  • Mishra PK, Tewari JP, Clear RM, Turkington TK (2004) Molecular genetic variation and geographical structuring in Fusarium graminearum. Ann Appl Biol 145:299–307

    CAS  Google Scholar 

  • Mishra PK, Tewari JP, Clear RM, Turkington TK (2006) Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Int Microbiol 9:65–68

    CAS  PubMed  Google Scholar 

  • Muthomi JW, Schütze A, Dehne HW, Mutitu EW, Oerke EC (2000) Characterization of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. J Plant Dis Prot 107:113–123

    CAS  Google Scholar 

  • Naef A, Defago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116:129–143

    CAS  Google Scholar 

  • Nakajima T, Yoshida M, Tomimura K (2008) Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. J Gen Plant Pathol 74:289–295

    CAS  Google Scholar 

  • Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128

    CAS  PubMed  Google Scholar 

  • Nganje W, Johnson D (2003) Economic impact of Fusarium head blight in malting barley: blending margins and firm-level risk. Curr Agric Food Resour Issues 4:16–26

    Google Scholar 

  • Nganje WE, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2002) Estimating the economic impact of a crop disease: the case of Fusarium head blight in U.S. wheat and barley. In: Canty SM, Lewis J, Siler L, Ward RW (eds) National Fusarium Head Blight Forum. U.S. Wheat & Barley Scab Initiative, Holiday Inn Cincinnati-Airport, Erlanger, pp 275–281

    Google Scholar 

  • Nganje WE, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2004) Regional economic impacts of Fusarium head blight in wheat and barley. Rev Agric Econ 26:332–347

    Google Scholar 

  • Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jorgensen LN (2011) Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101:960–969

    CAS  PubMed  Google Scholar 

  • Nightingale MJ, Marchylo BA, Clear RM, Dexter JE, Preston KR (1999) Fusarium head blight: effect of fungal proteases on wheat storage proteins. Cereal Chem 76:150–158

    CAS  Google Scholar 

  • Nyvall RF, Percich JA, Mirocha CJ (1999) Fusarium head blight of cultivated and natural wild rice (Zizania palustris) in Minnesota caused by Fusarium graminearum and associated Fusarium spp. Plant Dis 83:159–164

    Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 97:7905–7910

    PubMed  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623

    PubMed  Google Scholar 

  • O’Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjornstad S, Klemsdal SS (2008) Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet Biol 45:1514–1522

    PubMed  Google Scholar 

  • Obanor F, Erginbas-Orakci G, Tunali B, Nicol JM, Chakraborty S (2010) Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biol 114:753–765

    PubMed  Google Scholar 

  • Obst A, Gleissenthall JL, Beck R (1997) On the etiology of Fusarium head blight of wheat in south Germany – preceding crops, weather conditions for inoculum production and head infection, proneness of the crop to infection and mycotoxin production. Cereal Res Commun 25:699–703

    Google Scholar 

  • Oettler G, Heinrich N, Miedaner T (2004) Estimates of additive and dominance effects for Fusarium head blight resistance of winter tritical. Plant Breed 123:525–530

    Google Scholar 

  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83

    CAS  PubMed  Google Scholar 

  • Oliver RE, Cal X, Friesen TL, Halley S, Stack RW, Xu SS (2008) Evaluation of Fusarium head blight resistance in tetraploid wheat (Triticum turgidum L.). Crop Sci 48:213–222

    Google Scholar 

  • Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    CAS  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323–332

    CAS  PubMed  Google Scholar 

  • Palazzini JM, Ramirez ML, Torres AM, Chulze SN (2007) Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot 26:1702–1710

    CAS  Google Scholar 

  • Palazzini JM, Ramirez ML, Alberione EJ, Torres AM, Chulze SN (2009) Osmotic stress adaptation, compatible solutes accumulation and biocontrol efficacy of two potential biocontrol agents on Fusarium head blight in wheat. Biol Control 51:370–376

    Google Scholar 

  • Pandeya R, Graf R (2006) Advancement in FHB resistant winter wheat cultivar development using FRONTANA as the resistance donor parent. In: Ban T, Lewis JM, Phipps EE (eds) The global Fusarium initiative for international collaboration: a strategic planning workshop. CIMMYT, El Batan, Mexico, pp 77–81

    Google Scholar 

  • Parry DW, Jenkinson P, Mcleod L (1995) Fusarium ear blight (scab) in small-grain cereals – a review. Plant Pathol 44:207–238

    Google Scholar 

  • Paul PA, Lipps PE, Madden LV (2006) Meta-analysis of regression coefficients for the relationship between Fusarium head blight and deoxynivalenol content of wheat. Phytopathology 96:951–961

    CAS  PubMed  Google Scholar 

  • Paul PA, Lipps PE, Hershman DE, McMullen MP, Draper MA, Madden LV (2008) Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology 98:999–1011

    CAS  PubMed  Google Scholar 

  • Paul PA, McMullen MP, Hershman DE, Madden LV (2010) Meta-analysis of the effects of triazole-based fungicides on wheat yield and test weight as influenced by Fusarium head blight intensity. Phytopathology 100:160–171

    CAS  PubMed  Google Scholar 

  • Paulitz TC (1996) Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Dis 80:674–678

    Google Scholar 

  • Pereyra SA, Dill-Macky R (2008) Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Dis 92:800–807

    Google Scholar 

  • Pereyra SA, Dill-Macky R, Sims AL (2004) Survival and inoculum production of Gibberella zeae in wheat residue. Plant Dis 88:724–730

    Google Scholar 

  • Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8:39–69

    CAS  PubMed  Google Scholar 

  • Pirgozliev SR, Edwards SG, Hare MC, Jenkinson P (2003) Strategies for the control of Fusarium head blight in cereals. Eur J Plant Pathol 109:731–742

    Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    CAS  PubMed  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    CAS  PubMed  Google Scholar 

  • Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142

    CAS  PubMed  Google Scholar 

  • Puri KD, Zhong S (2010) The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology 100:1007–1014

    CAS  PubMed  Google Scholar 

  • Purss GS (1971) Pathogenic specialization in Fusarium graminearum. Aust J Agric Res 22:553–661

    Google Scholar 

  • Qu B, Li HP, Zhang JB, Xu YB, Huang T, Wu AB, Zhao CS, Carter J, Nicholson P, Liao YC (2008) Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol 57:15–24

    CAS  Google Scholar 

  • Ramirez ML, Chulze S, Magan N (2004) Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Prot 23:117–125

    CAS  Google Scholar 

  • Rohacik T, Hudec K (2005) Influence of agro-environmental factors on Fusarium infestation and population structure in wheat kernels. Ann Agric Environ Med 12:39–45

    PubMed  Google Scholar 

  • Rossi V, Languasco L, Pattori E, Giosue S (2002) Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by head blight. J Plant Pathol 84:53–64

    Google Scholar 

  • Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H (2011) Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Mol Breed 28:485–494

    Google Scholar 

  • Sarver BA, Ward TJ, Gale LR, Broz K, Kistler CH, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107

    PubMed  Google Scholar 

  • Schaafsma AW (2002) Economic changes imposed by mycotoxins in food grains: case study of deoxynivalenol in winter wheat. In: DeVries JW, Trucksess MW, Jackson LS (eds) Mycotoxins and food safety. Kluwer Academic/Plenum Publishing, New York, pp 271–276

    Google Scholar 

  • Schaafsma AW, Tamburic-Ilinic L, Miller JD, Hooker DC (2001) Agronomic considerations for reducing deoxynivalenol in wheat grain. Can J Plant Pathol 23:279–285

    Google Scholar 

  • Scherm B, Orru M, Balmas V, Spanu F, Azara E, Delogu G, Hammond TM, Keller NP, Migheli Q (2011) Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. Mol Plant Pathol 12:759–771

    CAS  PubMed  Google Scholar 

  • Schisler DA, Khan NI, Boehm MJ, Lipps PE, Slininger PJ, Zhang S (2006) Selection and evaluation of the potential of choline-metabolizing microbial strains to reduce Fusarium head blight. Biol Control 39:497–506

    Google Scholar 

  • Schmale DG, Leslie JF, Zeller KA, Saleh AA, Shields EJ, Bergstrom GC (2006) Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology 96:1021–1026

    CAS  Google Scholar 

  • Schmale DG, Wood-Jones AK, Cowger C, Bergstrom GC, Arellano C (2011) Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathol 60:909–917

    CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    CAS  PubMed  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer GJ, Adam G (2010) Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant Microbe Interact 23:977–986

    CAS  PubMed  Google Scholar 

  • Scott JB, Chakraborty S (2006) Multilocus sequence analysis of Fusarium pseudograminearum reveals a single phylogenetic species. Mycol Res 110:1413–1425

    CAS  PubMed  Google Scholar 

  • Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47:294–303

    CAS  Google Scholar 

  • Shaner G (2003) Epidemiology of Fusarium head blight of small grain cereals in North America. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 84–119

    Google Scholar 

  • Shin SY, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59:2371–2378

    CAS  PubMed  Google Scholar 

  • Shin S, Torres-Acosta JA, Heinen SJ, McCormick S, Lemmens M, Kovalsky-Paris MP, Berthiller F, Adam G, Muehlbauer GJ (2012) Transgenic Arabidopsis thaliana expressing a barley UDP glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. J Exp Bot 63:4731–4740

    Google Scholar 

  • Simpson DR, Weston GE, Turner JA, Jennings P, Nicholson P (2001) Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. Eur J Plant Pathol 107:421–431

    CAS  Google Scholar 

  • Snijders CHA (1990a) Genetic-variation for resistance to Fusarium head blight in bread wheat. Euphytica 50:171–179

    Google Scholar 

  • Snijders CHA (1990b) The inheritance of resistance to head blight caused by Fusarium culmorum in winter wheat. Euphytica 50:11–18

    Google Scholar 

  • Somers DJ, Thomas J, DePauw R, Fox S, Humphreys G, Fedak G (2005) Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theor Appl Genet 111:1623–1631

    CAS  PubMed  Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Cao WG (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593

    CAS  PubMed  Google Scholar 

  • Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153

    CAS  PubMed  Google Scholar 

  • Stack RW (1989) A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Can J Plant Pathol 11:137–142

    Google Scholar 

  • Stack RW (2003) History of Fusarium head blight with emphasis on North America. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 1–34

    Google Scholar 

  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Toth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204

    CAS  PubMed  Google Scholar 

  • Stenglein SA (2009) Fusarium poae: a pathogen that needs more attention. J Plant Pathol 91:25–36

    Google Scholar 

  • Stenglein SA, Rodriguero MS, Chandler E, Jennings P, Salerno GL, Nicholson P (2010) Phylogenetic relationships of Fusarium poae based on EF-1a and mtSSU sequences. Fungal Biol 114:96–106

    CAS  PubMed  Google Scholar 

  • Stepien L, Chelkowski J (2010) Fusarium head blight of wheat: pathogenic species and their mycotoxins. World Mycotoxin J 3:107–119

    CAS  Google Scholar 

  • Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159–166

    CAS  PubMed  Google Scholar 

  • Sugita-Konishi Y, Kubosaki A, Takahashi M, Park BJ, Tanaka T, Takatori K, Hirose M, Shibutani M (2008) Nivalenol and the targeting of the female reproductive system as well as haematopoietic and immune systems in rats after 90-day exposure through the diet. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1118–1127

    CAS  PubMed  Google Scholar 

  • Summerell BA, Leslie JF, Liew ECY, Laurence MH, Bullock S, Petrovic T, Bentley AR, Howard CG, Peterson SA, Walsh JL, Burgess LW (2011) Fusarium species associated with plants in Australia. Fungal Divers 46:1–27

    Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209

    Google Scholar 

  • Talas F, Longin F, Miedaner T (2011a) Sources of resistance to Fusarium head blight within Syrian durum wheat landraces. Plant Breed 130:398–400

    Google Scholar 

  • Talas F, Parzies HK, Miedaner T (2011b) Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur J Plant Pathol 131:39–48

    Google Scholar 

  • Talas F, Kalih R, Miedaner T (2012a) Within-field variation of Fusarium graminearum isolates for aggressiveness and deoxynivalenol production in wheat head blight. Phytopathology 102:128–134

    CAS  PubMed  Google Scholar 

  • Talas F, Wuerschum T, Reif JC, Parzies HK, Miedaner T (2012b) Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight. BMC Genet 13:14

    CAS  PubMed  Google Scholar 

  • Tamburic-Ilincic L, Somers D, Fedak G, Schaafsma A (2009) Different quantitative trait loci for Fusarium resistance in wheat seedlings and adult stage in the Wuhan/Nyubai wheat population. Euphytica 165:453–458

    CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    CAS  PubMed  Google Scholar 

  • Tonshin AA, Teplova VV, Andersson MA, Salkinoja-Salonen MS (2010) The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology 276:49–57

    CAS  PubMed  Google Scholar 

  • Torp M, Nirenberg HI (2004) Fusarium langsethiae sp. nov. on cereals in Europe. Int J Food Microbiol 95:247–256

    PubMed  Google Scholar 

  • Toth B, Mesterhazy A, Nicholson P, Teren J, Varga J (2004) Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. Eur J Plant Pathol 110:587–599

    CAS  Google Scholar 

  • Toth B, Kaszonyi G, Bartok T, Varga J, Mesterhazy A (2008) Common resistance of wheat to members of the Fusarium graminearum species complex and F. culmorum. Plant Breed 127:1–8

    Google Scholar 

  • Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149:103–110

    CAS  PubMed  Google Scholar 

  • Trail F, Common R (2000) Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92:130–138

    Google Scholar 

  • Trail F, Xu HX, Loranger R, Gadoury D (2002) Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94:181–189

    PubMed  Google Scholar 

  • Trail F, Gaffoor I, Vogel S (2005) Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fuarium graminearum). Fungal Genet Biol 42:528–533

    PubMed  Google Scholar 

  • Tschanz AT, Horst RK, Nelson PE (1976) Effect of environment on sexual reproduction of Gibberella zeae. Mycologia 68:327–340

    Google Scholar 

  • Ueno Y (1985) The toxicology of mycotoxins. Crc Cr Rev Toxicol 14:99–132

    CAS  Google Scholar 

  • Uhlig S, Jestoi M, Parikka P (2007) Fusarium avenaceum – the North European situation. Int J Food Microbiol 119:17–24

    CAS  PubMed  Google Scholar 

  • Van Eeuwijk EA, Mesterhazy A, Kling CI, Ruckenbauer P, Saur L, Buerstmayr H, Lemmens M, Keizer LCP, Maurin N, Snijders CHA (1995) Assessing nonspecificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theor Appl Genet 90:221–228

    Google Scholar 

  • Vanderplank JE (1984) Disease resistance in plants. Academic, London

    Google Scholar 

  • Verstraete F (2008) European Union legislation on mycotoxins in food and feed. Overview of the decision-making process and recent and future developments. In: Leslie JF, Bandyopadhyay R, Visconti A (eds) Mycotoxins: detection methods, management, public health and agricultural trade. CABI, Wallingford, pp 77–99

    Google Scholar 

  • von der Ohe C, Miedaner T (2011) Competitive aggressiveness in binary mixtures of Fusarium graminearum and F. culmorum isolates inoculated on spring wheat with highly effective resistance QTL. J Phytopathol 159:401–410

    Google Scholar 

  • von der Ohe C, Ebmeyer E, Korzun V, Miedaner T (2010a) Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci 50:2283–2290

    Google Scholar 

  • von der Ohe C, Gauthier V, Tamburic-Ilincic L, Brule-Babel A, Fernando WGD, Clear R, Ward TJ, Miedaner T (2010b) A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Pathol 127:407–417

    CAS  Google Scholar 

  • Voss HH, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed 127:333–339

    Google Scholar 

  • Voss HH, Bowden RL, Leslie JF, Miedaner T (2010) Variation and transgression of aggressiveness among two Gibberella zeae crosses developed from highly aggressive parental isolates. Phytopathology 100:904–912

    PubMed  Google Scholar 

  • Waalwijk C, Kastelein P, de Vries I, Kerenyi Z, van der Lee T, Hesselink T, Kohl J, Kema G (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754

    CAS  Google Scholar 

  • Walker SL, Leath S, Hagler WM, Murphy JP (2001) Variation among isolates of Fusarium graminearum associated with Fusarium head blight in North Carolina. Plant Dis 85:404–410

    Google Scholar 

  • Walter S, Nicholson P, Doohan FM (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    CAS  PubMed  Google Scholar 

  • Wan YF, Yen C, Yang JL (1997) The diversity of head-scab resistance in Triticeae and their relation to ecological conditions. Euphytica 97:277–281

    Google Scholar 

  • Wang YZ (1997) Epidemiology and management of wheat scab in China. In: Dubin HJ, Gilchrist L, Reeves J, McNab A (eds) Fusarium head scab: global status and future prospects. CIMMYT, El Batan, Mexico, pp 97–105

    Google Scholar 

  • Wang JH, Wieser H, Pawelzik E, Weinert J, Keutgen AJ, Wolf GA (2005) Impact of the fungal protease produced by Fusarium culmorum on the protein quality and breadmaking properties of winter wheat. Eur Food Res Technol 220:552–559

    CAS  Google Scholar 

  • Wang H, Hwang SF, Eudes F, Chang KF, Howard RJ, Turnbull GD (2006) Trichothecenes and aggressiveness of Fusarium graminearum causing seedling blight and root rot in cereals. Plant Pathol 55:224–230

    Google Scholar 

  • Wanyoike MW, Walker F, Buchenauer H (2002) Relationship between virulence, fungal biomass and mycotoxin production by Fusarium graminearum in winter wheat head blight. J Plant Dis Prot 109:589–600

    CAS  Google Scholar 

  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci USA 99:9278–9283

    CAS  PubMed  Google Scholar 

  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484

    PubMed  Google Scholar 

  • Wilde F, Miedaner T (2006) Selection for Fusarium head blight resistance in early generations reduces the deoxynivalenol (DON) content in grain of winter and spring wheat. Plant Breed 125:96–98

    CAS  Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370

    CAS  Google Scholar 

  • Willyerd KT, Li C, Madden LV, Bradley CA, Bergstrom GC, Sweets LE, McMullen M, Ransom JK, Grybauskas A, Osborne L, Wegulo SN, Hershman DE, Wise K, Bockus WW, Groth D, Dill-Macky R, Milus E, Esker PD, Waxman KD, Adee EA, Ebelhar SE, Young BG, Paul PA (2012) Efficacy and stability of integrating fungicide and cultivar resistance to manage Fusarium head blight and deoxynivalenol in wheat. Plant Dis 96:957–967

    CAS  Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21

    CAS  PubMed  Google Scholar 

  • Xu XM (2003) Effects of environmental conditions on the development of Fusarium ear blight. Eur J Plant Pathol 109:683–689

    Google Scholar 

  • Xu X, Nicholson P (2009) Community ecology of fungal pathogens causing wheat head blight. Annu Rev Phytopathol 47:83–103

    CAS  PubMed  Google Scholar 

  • Xu XM, Parry DW, Nicholson P, Thomsett MA, Simpson D, Edwards SG, Cooke BM, Doohan FM, Brennan JM, Moretti A, Tocco G, Mule G, Hornok L, Giczey G, Tatnell J (2005) Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur J Plant Pathol 112:143–154

    Google Scholar 

  • Xu XM, Monger W, Ritieni A, Nicholson P (2007) Effect of temperature and duration of wetness during initial infection periods on disease development, fungal biomass and mycotoxin concentrations on wheat inoculated with single, or combinations of, Fusarium species. Plant Pathol 56:943–956

    CAS  Google Scholar 

  • Xue AG, Voldeng HD, Savard ME, Fedak G (2009) Biological management of Fusarium head blight and mycotoxin contamination in wheat. World Mycotoxin J 2:193–201

    CAS  Google Scholar 

  • Yang ZP, Yang XY, Huang DC (1999) Comparison of evaluation methods for selection of resistance to Fusarium head blight in a recurrent selection programme in wheat (Triticum aestivum L.). Plant Breed 118:289–292

    Google Scholar 

  • Yang L, van der Lee T, Yang X, Yu D, Waalwijk C (2008) Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98:719–727

    CAS  PubMed  Google Scholar 

  • Yang F, Jensen JD, Spliid NH, Svensson B, Jacobsen S, Jorgensen LN, Jorgensen HJ, Collinge DB, Finnie C (2010) Investigation of the effect of nitrogen on severity of Fusarium head blight in barley. J Proteomics 73:743–752

    CAS  PubMed  Google Scholar 

  • Yang F, Svensson B, Finnie C (2011) Response of germinating barley seeds to Fusarium graminearum: the first molecular insight into Fusarium seedling blight. Plant Physiol Biochem 49:1362–1368

    CAS  PubMed  Google Scholar 

  • Yi C, Kaul HP, Kubler E, Schwadorf K, Aufhammer W (2001) Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop, soil tillage and nitrogen fertilization. J Plant Dis Prot 108:217–230

    CAS  Google Scholar 

  • Yin Y, Liu X, Li B, Ma Z (2009) Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487–497

    CAS  PubMed  Google Scholar 

  • Yli-Mattila T (2010) Ecology and evolution of toxigenic Fusarium species in cereals in Northern Europe and Asia. J Plant Pathol 92:7–18

    Google Scholar 

  • Yli-Mattila T, Gagkaeva T, Ward TJ, Aoki T, Kistler HC, O’Donnell K (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841–852

    PubMed  Google Scholar 

  • Yoshida M, Nakajima T, Arai M, Suzuki F, Tomimura K (2008) Effect of the timing of fungicide application on Fusarium head blight and mycotoxin accumulation in closed-flowering barley. Plant Dis 92:1164–1170

    Google Scholar 

  • Zeller KA, Bowden RL, Leslie JF (2003) Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology 93:874–880

    PubMed  Google Scholar 

  • Zeller KA, Bowden RL, Leslie JF (2004) Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol Ecol 13:563–571

    PubMed  Google Scholar 

  • Zhang JB, Li HP, Dang FJ, Qu B, Xu YB, Zhao CS, Liao YC (2007) Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol Res 111:967–975

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhang Z, van der Lee T, Chen WQ, Xu J, Xu JS, Yang L, Yu D, Waalwijk C, Feng J (2010a) Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in Southern China. Phytopathology 100:328–336

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang H, van der Lee T, Chen WQ, Arens P, Xu J, Xu JS, Yang LJ, Yu DZ, Waalwijk C, Feng JE (2010b) Geographic substructure of Fusarium asiaticum isolates collected from Barley in China. Eur J Plant Pathol 127:239–248

    Google Scholar 

  • Zhang H, Van der Lee T, Waalwijk C, Chen W, Xu J, Zhang Y, Feng J (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7:e31722

    CAS  PubMed  Google Scholar 

  • Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan G. R. Wirsel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becher, R., Miedaner, T., Wirsel, S.G.R. (2013). 8 Biology, Diversity, and Management of FHB-Causing Fusarium Species in Small-Grain Cereals. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_8

Download citation

Publish with us

Policies and ethics