Skip to main content

Experimental Study of the Population Parameters Settings in Cooperative Multi-agent System Solving Instances of the VRP

  • Chapter
Transactions on Computational Collective Intelligence IX

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 7770))

Abstract

Usually a lot of experiments are often required in order to tune population-based algorithms, designed for solving difficult optimization problems. Individial features of a particular problem, different parameters of population of individuals, or structure of the algorithm may influence results produced by the system. The paper aims at evaluating experimentally to what extent (if any) different values of the population parameters controlled by the user in a multi-agent system solving instances of Vehicle Routing Problem influence computational results. The reported experiment involved several methods of creating an initial population of solutions and several cooperating agents representing improvement heuristics working in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alander, J.T.: On optimal population size of genetic algorithms. In: Proceedings of the IEEE Computer Systems and Software Engineering, pp. 65–69 (1992)

    Google Scholar 

  2. Aydin, M.E., Fogarty, T.C.: Teams of autonomous agents for job-shop scheduling problems: An Experimental Study. Journal of Intelligent Manufacturing 15(4), 455–462 (2004)

    Article  Google Scholar 

  3. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: JADE-Based A-Team as a Tool for Implementing Population-Based Algorithms. In: Proceedings of IEEE Intelligent Systems Design and Applications Conference, Jinan, vol. 3, pp. 144–149. IEEE Press (2006)

    Google Scholar 

  4. Barbucha, D., Jędrzejowicz, P.: An experimental investigation of the synergetic effect of multiple agents working together in the A-team. Systems Science 34(2), 55–63 (2008)

    MATH  Google Scholar 

  5. Barbucha, D., Jędrzejowicz, P.: An Agent-Based Approach to Vehicle Routing Problem. International Journal of Applied Mathematics and Computer Science 4(1), 18–23 (2007)

    Google Scholar 

  6. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: JABAT Middleware as a Tool for Solving Optimization Problems. In: Nguyen, N.T., Kowalczyk, R. (eds.) Transactions on CCI II. LNCS, vol. 6450, pp. 181–195. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Barbucha, D.: Solving the Capacitated Vehicle Routing Problem by a Team of Parallel Heterogeneous Cooperating Agents. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS, vol. 6923, pp. 332–341. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Barbucha, D.: Search modes for the cooperative multi-agent system solving the vehicle routing problem. Neurocomputing 88, 13–23 (2012)

    Article  Google Scholar 

  9. Blum, C., Roli, A., Sampels, M.: Hybrid Metaheuristics – An Emerging Approach to Optimization. SCI, vol. 114. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  10. Boese, K., Kahng, A., Muddu, S.: A new adaptive multistart technique for combinatorial global optimization. Operations Research Letters 16, 101–113 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)

    Article  Google Scholar 

  12. Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.): Combinatorial optimization. John Wiley, Chichester (1979)

    MATH  Google Scholar 

  13. Craig, I.: Blackboard systems. Alex Publishing Co., Norwood (1995)

    Google Scholar 

  14. Crainic, T.G., Toulouse, M.: Explicit and Emergent Cooperation Schemes for Search Algorithms. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS, vol. 5313, pp. 95–109. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  16. de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002)

    MATH  Google Scholar 

  17. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Dreżewski, R.: A Model of Co-evolution in Multi-agent System. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 314–323. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Eglese, R.W.: Simulated annealing: A tool for operational research. European Journal of Operational Research 46, 271–281 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  21. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fleurent, C., Ferland, J.A.: Genetic hybrids for the quadratic assignment problem. DIMACS Series, Discr. Math. Theor. Comp. Sci. 16, 173–187 (1994)

    MathSciNet  Google Scholar 

  23. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle dispatch problem. Operations Research 22, 240–349 (1974)

    Article  Google Scholar 

  24. Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)

    Book  MATH  Google Scholar 

  25. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39, 653–684 (2000)

    MathSciNet  Google Scholar 

  26. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  27. Golden, B., Stewart, W.: Empirical Analysis of Heuristics. In: Lawler, E., Lenstra, J., Rinnoy, A., Shmoys, D. (eds.) Travelling Salesman Problem, pp. 207–250. Wiley-Interscience, New York (1985)

    Google Scholar 

  28. Greensmith, J., Whitbrook, A., Aickelin, U.: Artificial Immune Systems. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146. Springer (2010)

    Google Scholar 

  29. Hertz, A., Kobler, D.: A framework for the description of evolutionary algorithms. European Journal of Operational Research 126, 1–12 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  31. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Societe Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  32. Jędrzejowicz, P.: A-Teams and Their Applications. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 36–50. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems 1, 7–38 (1998)

    Article  Google Scholar 

  34. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  35. Kisiel-Dorohinicki, M.: Agent-Oriented Model of Simulated Evolution. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  36. Koumousis, V.K., Katsaras, C.P.: A sawtooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Transactions on Evolutionary Computation 10(1), 19–28 (2006)

    Article  Google Scholar 

  37. Laporte, G., Gendreau, M., Potvin, J., Semet, F.: Classical and modern heuristics for the vehicle routing problem. International Transactions in Operational Research 7, 285–300 (2000)

    Article  MathSciNet  Google Scholar 

  38. Leung, Y., Gao, Y., Xu, Z.: Degree of population diversity–a perspective on premature convergence in genetic algorithms and its Markov chain analysis. IEEE Transactions on Neural Networks 8(5), 1165–1176 (1997)

    Article  Google Scholar 

  39. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)

    MATH  Google Scholar 

  40. Lobo, F.G., Goldberg, D.E.: The parameterless genetic algorithm in practice. Information Sciences–Informatics and Computer Science 167(1-4), 217–232 (2004)

    MATH  Google Scholar 

  41. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  42. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, 421–451 (1993)

    Article  MATH  Google Scholar 

  43. Parunak, H.V.D.: Agents in overalls: Experiences and issues in the development and deployment of industrial agent-based systems. International Journal of Cooperative Information Systems 9(3), 209–228 (2000)

    Article  Google Scholar 

  44. Piszcz, A., Soule, T.: Genetic programming: Optimal population sizes for varying complexity problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 953–954 (2006)

    Google Scholar 

  45. Puchinger, J., Raidl, G.R.: Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  46. Resende, M.G.C., Ribeiro, C.C., Glover, F., Marti, R.: Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 87–107. Springer (2010)

    Google Scholar 

  47. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Univ. of Illinois Press (1949)

    Google Scholar 

  48. Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley and Sons, Inc. (2009)

    Google Scholar 

  49. Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)

    Article  Google Scholar 

  50. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbucha, D. (2013). Experimental Study of the Population Parameters Settings in Cooperative Multi-agent System Solving Instances of the VRP. In: Nguyen, N.T. (eds) Transactions on Computational Collective Intelligence IX. Lecture Notes in Computer Science, vol 7770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36815-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36815-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36814-1

  • Online ISBN: 978-3-642-36815-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics