Feasibility and Completeness of Cryptographic Tasks in the Quantum World

  • Serge Fehr
  • Jonathan Katz
  • Fang Song
  • Hong-Sheng Zhou
  • Vassilis Zikas
Conference paper

DOI: 10.1007/978-3-642-36594-2_16

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)
Cite this paper as:
Fehr S., Katz J., Song F., Zhou HS., Zikas V. (2013) Feasibility and Completeness of Cryptographic Tasks in the Quantum World. In: Sahai A. (eds) Theory of Cryptography. Lecture Notes in Computer Science, vol 7785. Springer, Berlin, Heidelberg

Abstract

It is known that cryptographic feasibility results can change by moving from the classical to the quantum world. With this in mind, we study the feasibility of realizing functionalities in the framework of universal composability, with respect to both computational and information-theoretic security. With respect to computational security, we show that existing feasibility results carry over unchanged from the classical to the quantum world; a functionality is “trivial” (i.e., can be realized without setup) in the quantum world if and only if it is trivial in the classical world. The same holds with regard to functionalities that are complete (i.e., can be used to realize arbitrary other functionalities).

In the information-theoretic setting, the quantum and classical worlds differ. In the quantum world, functionalities in the class we consider are either complete, trivial, or belong to a family of simultaneous-exchange functionalities (e.g., XOR). However, other results in the information-theoretic setting remain roughly unchanged.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Serge Fehr
    • 1
  • Jonathan Katz
    • 2
  • Fang Song
    • 3
  • Hong-Sheng Zhou
    • 2
  • Vassilis Zikas
    • 4
  1. 1.Centrum Wiskunde & Informatica (CWI)The Netherlands
  2. 2.University of MarylandUSA
  3. 3.Pennsylvania State UniversityUSA
  4. 4.UCLAUSA

Personalised recommendations