Skip to main content

Biology, Chemistry and Structure of Tension Wood

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 20))

Abstract

Trees maintain and adjust their stature by developing reaction wood in stems and branches. The physical properties of reaction wood result in a higher strain than in normal wood. Because reaction wood is only formed at one side of the stem, this unilateral strain creates a force and hence a movement of the stem or branches towards a more favorable position. The spectacular modification of cambial growth, cell shape, cell-wall chemistry, and ultrastructure observed in reaction wood has attracted generations of scientists to study its features and molecular regulation. In the early literature, the physiology of reaction wood induction was much studied, especially the relative importance of positional and mechanical sensing for its induction. Even today this is still a matter of debate and confusion, as discussed in the first part of this chapter. In angiosperm trees, reaction wood is denoted tension wood (TW), and in many tree species TW fibers develop an inner cellulose-rich gelatinous layer (G-fibers). Much research has been devoted to understand the chemistry and ultrastructure of the gelatinous layer and its function in creating tension stress in the wood. Less attention has been paid to TW without G-fibers, although it has similar physical properties and function as TW with G-fibers. The chemistry and structural variation of TW, and their importance for TW function, are discussed in the second part of this chapter. Not much is known about the molecular control of TW formation. However, some information has been gained about the role of plant hormones as signaling components in TW induction. The last part of the chapter summarizes this knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguayo MG, Quintupill L, Castillo R, Baeza J, Freer J, Mendonca RT (2010) Determination of differences in anatomical and chemical characteristics of tension and opposite wood of 8-year old Eucalyptus globulus. Maderas-Ciencia Y Tecnologia 12:241–251

    CAS  Google Scholar 

  • Almeras T, Fournier M (2009) Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J Theor Biol 256:370–381

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    Article  PubMed  CAS  Google Scholar 

  • Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349

    Article  PubMed  Google Scholar 

  • Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM et al (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  CAS  Google Scholar 

  • Araki N, Fujita M, Saiki H, Harada H (1982) Transition of the fiber wall structure from normal wood to tension wood in Robinia pseudoacacia L. and Populus euramericana Guinier. Mokuzai Gakhaishi 28:267–273

    Google Scholar 

  • Arend M (2008) Immunolocalization of (1,4)-beta-galactan in tension wood fibers of poplar. Tree Physiol 28:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Baba K, Adachi K, Take T, Yokoyama T, Itoh T, Nakamura T (1995) Induction of tension wood in Ga(3)-treated branches of the weeping type of Japanese-cherry, Prunus spachiana. Plant Cell Physiol 36:983–988

    CAS  Google Scholar 

  • Bailleres H, Chanson B, Fournier M, Tollier MT, Monties B (1995) Wood structure, chemical-composition and growth strains in Eucalyptus clones. Annales Des Sciences Forestieres 52: 157–172

    Article  Google Scholar 

  • Bentum ALK, Cote WA, Day AC, Timell TE (1969) Distribution of lignin in normal and tension wood. Wood Sci Technol 3:218–231

    Article  CAS  Google Scholar 

  • Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  CAS  Google Scholar 

  • Bjurhager I, Olsson AM, Zhang B, Gerber L, Kumar M, Berglund LA et al (2010) Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11:2359–2365

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Esch JJ, Hall AE, Rodriguez FI, Binder BM (1998) The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc Lond B Biol Sci 353:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Bowling AJ, Vaughn KC (2008) Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am J Bot 95:655–663

    Article  PubMed  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma CP, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Chang SS, Clair B, Ruelle J, Beauchene J, Di Renzo F, Quignard F et al (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030

    Article  PubMed  CAS  Google Scholar 

  • Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131

    Google Scholar 

  • Clair B, Gril J, Baba K, Thibaut B, Sugiyama J (2005a) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26:189–195

    Article  Google Scholar 

  • Clair B, Thibaut B, Sugiyama J (2005b) On the detachment of the gelatinous layer in tension wood fiber. J Wood Sci 51:218–221

    Article  CAS  Google Scholar 

  • Clair B, Almeras T, Yamamoto H, Okuyama T, Sugiyama J (2006a) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1135

    Article  PubMed  CAS  Google Scholar 

  • Clair B, Ruelle J, Beauchene J, Prevost MF, Fournier M (2006b) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA J 27: 329–338

    Google Scholar 

  • Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498

    Article  PubMed  CAS  Google Scholar 

  • Clair B, Almeras T, Pilate G, Jullien D, Sugiyama J, Riekel C (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 155: 562–570

    Article  PubMed  CAS  Google Scholar 

  • Côté WA, Day AC, Timell TE (1969) A contribution to ultrastructure of tension wood fibers. Wood Sci Technol 3:257–271

    Article  Google Scholar 

  • Cronshaw J, Morey PR (1968) Effect of plant growth substances on development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65:379–391

    Article  CAS  Google Scholar 

  • Decou R, Lhernould S, Laurans F, Sulpice E, Leple JC, Dejardin A et al (2009) Cloning and expression analysis of a wood-associated xylosidase gene (PtaBXL1) in poplar tension wood. Phytochemistry 70:163–172

    Article  PubMed  CAS  Google Scholar 

  • Dejardin A, Leple JC, Lesage-Descauses MC, Costa G, Pilate G (2004) Expressed sequence tags from poplar wood tissues – a comparative analysis from multiple libraries. Plant Biol 6:55–64

    Article  PubMed  Google Scholar 

  • Digby J, Firn RD (1995) The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ 18:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Digby J, Wareing PF (1966) Effect of applied growth hormones on cambial division and differentiation of cambial derivatives. Ann Bot 30:539–548

    CAS  Google Scholar 

  • Donaldson L, Singh A (2013) Formation and structure of compression wood. In: Fromm J (ed) Cellular aspects of wood formation, vol 20. Springer, Heidelberg, pp 225–256

    Google Scholar 

  • Du S, Yamamoto F (2007) An overview of the biology of reaction wood formation. J Integr Plant Biol 49:131–143

    Article  CAS  Google Scholar 

  • Dünisch O, Fladung M, Nakaba S, Watanabe Y, Funada R (2006) Influence of overexpression of a gibberellin 20-oxidase gene on the kinetics of xylem cell development in hybrid poplar (Populus tremula L. and P. tremuloides Michx.). Holzforschung 60:608–617

    Article  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Article  PubMed  CAS  Google Scholar 

  • Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29:237–246

    Article  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T et al (2008) Gibberellin-induced formation of tension wood in angiosperm trees. Planta 227:1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Furuya N, Takahashi S, Miyazaki M (1970) The chemical composition of gelatinous layer from the tension wood of Populus euroamericana. Mokuzai Gakkaishi 16:26–30

    CAS  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Goswami L, Dunlop JWC, Jungnikl K, Eder M, Gierlinger N, Coutand C et al (2008) Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J 56:531–538

    Article  PubMed  CAS  Google Scholar 

  • Gou JQ, Ma C, Kadmiel M, Gai Y, Strauss S, Jiang XN et al (2011) Tissue-specific expression of Populus C-19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. New Phytol 192:626–639

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson C, Ollinmaa PJ, Saarnio J (1952) The carbohydrates in birchwood. Acta Chem Scand 6:1299–1300

    Article  CAS  Google Scholar 

  • Hartig R (1901) Holzuntersuchungen. Altes und Neues. Julius Springer Verlag, 99

    Google Scholar 

  • Hartmann F (1932) Ursachen und Gesetzmässigkeit exzentrischen Dickenwachstums bei Nadel- und Laubbäumen. Forstwissenschaftliches Centralblatt 54:497

    Google Scholar 

  • Hedenström M, Wiklund-Lindstrom S, Oman T, Lu FC, Gerber L, Schatz P et al (2009) Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol Plant 2:933–942

    Article  PubMed  CAS  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  PubMed  CAS  Google Scholar 

  • Hobson N, Roach MJ, Deyholos MK (2010) Gene expression in tension wood and bast fibres. Russ J Plant Physiol 57:321–327

    Article  CAS  Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    Article  PubMed  CAS  Google Scholar 

  • Jaccard P (1938) Exzentrisches Dickenwachstum und anatomische-histologische Differenzierung des Holzes. Berichte der Schweizerischen Botanischen Gesellschaft 48:491–537

    Google Scholar 

  • Jiang S, Furukawa I, Honma T, Mori M, Nakamura T, Yamamoto F (1998) Effects of applied gibberellins and uniconazole-P on gravitropism and xylem formation in horizontally positioned Fraxinus mandshurica seedlings. J Wood Sci 44:385–391

    Article  CAS  Google Scholar 

  • Jin H, Do J, Moon D, Noh EW, Kim W, Kwon M (2011) EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. Planta 234: 959–977

    Article  PubMed  CAS  Google Scholar 

  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv 'Ghoy'). IAWA J 22: 133–157

    Google Scholar 

  • Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55:250–257

    Article  CAS  Google Scholar 

  • Kennedy RW, Farrar JL (1965) Tracheid development in tilted seedlings. In: Coté, WA Jr (ed) Cellular ultrastructure of woody plants. Proceedings, Advanced Science Seminar, New York 1964. Pages: xii + 603 pp. Syracuse University Press; Syracuse; USA

    Google Scholar 

  • Kim JS, Sandquist D, Sundberg B, Daniel G (2012) Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta 235:1315–1330

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Becker VK, Altaner CM (2012) An unusual form of reaction wood in Koromiko [Hebe salicifolia G. Forst. (Pennell)], a southern hemisphere angiosperm. Planta 235:289–297

    Article  PubMed  CAS  Google Scholar 

  • Kuo CM, Timell TE (1969) Isolation and Characterization of a Galactan from Tension Wood of American Beech (Fagus Grandifolia Ehrl). Svensk Papperstidning-Nordisk Cellulosa 72:703

    CAS  Google Scholar 

  • Kwon M, Bedgar DL, Piastuch W, Davin LB, Lewis NG (2001) Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. Phytochemistry 57:847–857

    Article  PubMed  CAS  Google Scholar 

  • Lafarguette F, Leple JC, Dejardin A, Laurans F, Costa G, Lesage-Descauses MC et al (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  • Lautner S, Zollfrank C, Fromm J (2012) Microfibril angle distribution of poplar tension wood. IAWA J 33:431–439

    Article  Google Scholar 

  • Lehringer C, Gierlinger N, Koch G (2008) Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Holzforschung 62:255–263

    Article  CAS  Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant-growth regulators in forest tree cambial growth. Plant Growth Regul 6:137–169

    Article  CAS  Google Scholar 

  • Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106:5984–5989

    Article  PubMed  CAS  Google Scholar 

  • MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62:689–703

    Article  PubMed  CAS  Google Scholar 

  • Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003

    Article  PubMed  CAS  Google Scholar 

  • McLean JP, Arnould O, Beauchene J, Clair B (2012) The effect of the G-layer on the viscoelastic properties of tropical hardwoods. Ann For Sci 69:399–408

    Article  Google Scholar 

  • Meier H (1962) Studies on a galactan from tension wood of beech (Fagus-Sylvatica L.). Acta Chem Scand 16:2275–2283

    Article  CAS  Google Scholar 

  • Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565

    Article  PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300

    Article  PubMed  CAS  Google Scholar 

  • Morey PR, Cronshaw J (1968) Induction of tension wood by 2,4-dinitrophenol and auxins. Protoplasma 65:393–405

    Article  CAS  Google Scholar 

  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G et al (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid Aspen. Plant J 31:675–685

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479

    Article  CAS  Google Scholar 

  • Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurashi S, Hosono M et al (1994) The effects of Ga(3) on weeping of growing shoots of the Japanese-cherry, Prunus-spachiana. Plant Cell Physiol 35:523–527

    CAS  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C et al (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855

    Article  PubMed  CAS  Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R et al (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar – a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    Article  PubMed  CAS  Google Scholar 

  • Norberg PH, Meier H (1966) Physical and chemical properties of gelatinous layer in tension wood fibres of aspen (Populus Tremula L.). Holzforschung 20:174–178

    Article  CAS  Google Scholar 

  • Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN et al (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot 110:887–895

    Article  PubMed  CAS  Google Scholar 

  • Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood – role of microfibrils and lignification. Annales Des Sciences Forestieres 51:291–300

    Article  Google Scholar 

  • Onaka F (1949) Studies on compression and tension wood. Wood Research, Bulletin of the Wood Research Institute, Kyoto University, Japan, vol 24, pp 1–88

    Google Scholar 

  • Paux E, Carocha V, Marques C, de Sousa AM, Borralho N, Sivadon P et al (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167:89–100

    Article  PubMed  CAS  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple JC, Laurans F et al (2004) Lignification and tension wood. C R Biol 327:889–901

    Article  PubMed  CAS  Google Scholar 

  • Prodhan AKMA, Ohtani J, Funada R, Abe H, Fukazawa K (1995) Ultrastructural investigation of tension wood fiber in Fraxinus-Mandshurica Rupr. Var. japonica Maxim. Ann Bot 75: 311–317

    Article  Google Scholar 

  • Ridoutt BG, Pharis RP, Sands R (1996) Fibre length and gibberellins A(1) and A(20) are decreased in Eucalyptus globulus by acylcyclohexanedione injected into the stem. Physiol Plant 96: 559–566

    Article  CAS  Google Scholar 

  • Ruelle J, Clair B, Beauchene J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria. IAWA J 27:341–376

    Article  Google Scholar 

  • Ruelle J, Yoshida M, Clair B, Thibaut B (2007) Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees Struct Funct 21:345–355

    Article  Google Scholar 

  • Sandquist D, Filonova L, von Schantz L, Ohlin M, Daniel G (2010) Microdistribution of xyloglucan in differentiating poplar cells. Bioresources 5:796–807

    CAS  Google Scholar 

  • Scurfield G (1973) Reaction wood – its structure and function. Science 179:647–655

    Article  PubMed  CAS  Google Scholar 

  • Scurfield G, Wardrop AB (1963) The nature of reaction wood. VII. Lignification in reaction wood. Aust J Bot 11:107–116

    Article  Google Scholar 

  • Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama K, Okuyama T, Yamamoto H, Yoshida M (1993) Generation process of growth stresses in cell-walls – relation between longitudinal released strain and chemical-composition. Wood Sci Technol 27:257–262

    Article  CAS  Google Scholar 

  • Sultana RS, Ishiguri F, Yokota S, Iizuka K, Hiraiwa T, Yoshizawa N (2010) Wood anatomy of nine Japanese hardwood species forming reaction wood without gelatinous fibers. IAWA J 31: 191–202

    Article  Google Scholar 

  • Sundberg B, Little CHA (1990) Tracheid production in response to changes in the internal level of indole-3-acetic-acid in 1-year-old shoots of Scots pine. Plant Physiol 94:1721–1727

    Article  PubMed  CAS  Google Scholar 

  • Sundberg B, Uggla C (1998) Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. Physiol Plant 104:22–29

    Article  CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H, (2000) Cambial growth and auxin gradients. In Savidge RA, Barnett, JR, Napier R (ed): Cell and molecular biology of wood formation, p169. Experimental Biology Reviews, Bios Scientific Publishers LTD, Oxon, England

    Google Scholar 

  • Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Gobel C, Grzeganek P et al (2008) GH3: GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93: 1466–1476

    Article  PubMed  Google Scholar 

  • Tholen D, Voesenek LACJ, Poorter H (2004) Ethylene insensitivity does not increase leaf area or relative growth rate in arabidopsis, Nicotiana tabacum, and Petunia × hybrida. Plant Physiol 134:1803–1812

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1969) Chemical composition of tension wood. Svensk Papperstidning-Nordisk Cellulosa 72:173–181

    CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol 2. Springer, Berlin

    Google Scholar 

  • Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115: 577–585

    PubMed  CAS  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Article  PubMed  CAS  Google Scholar 

  • Wardrop AB, Dadswell HE (1955) The nature of reaction wood. IV. Variations in cell wall organization in tension wood fibers. Aust J Bot 3:177–189

    Article  Google Scholar 

  • Wareing PF, Hanney CEA, Digby J (1964) The role of endogenous hormones in cambial activity and xylem differentiation. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic, New York, pp 323–344

    Google Scholar 

  • Wilson BF, Archer RR (1981) Apical control of branch movements in white-pine – biological aspects. Plant Physiol 68:1285–1288

    Article  PubMed  CAS  Google Scholar 

  • Wilson BF, Archer RR (1983) Apical control of branch movements and tension wood in black cherry and white ash trees. Can J For Res (Revue Canadienne De Recherche Forestiere) 13:594–600

    Article  Google Scholar 

  • Yoshida M, Nakamura T, Yamamoto H, Okuyama T (1999) Negative gravitropism and growth stress in GA(3)-treated branches of Prunus spachiana Kitamura f. spachiana cv. Plenarosea. J Wood Sci 45:368–372

    Article  Google Scholar 

  • Yoshida M, Ohta H, Okuyama T (2002a) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). J Wood Sci 48:99–105

    Article  CAS  Google Scholar 

  • Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002b) Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees Struct Funct 16: 457–464

    Article  CAS  Google Scholar 

  • Yoshizawa N, Koike S, Idei T (1984) Structural changes of tracheid wall accompanied by compression wood formation in Taxus cuspidata and Torreya nucifera. Bull Utsunomiya Univ For 20:59–76

    Google Scholar 

  • Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S (2000) Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol 34:183–196

    Article  CAS  Google Scholar 

  • Zhong R, Ye ZH (2013) Transcriptional regulation of wood formation in tree species. In: Fromm J (ed) Cellular aspects of wood formation, vol 20. Springer, Heidelberg, pp 141–158

    Google Scholar 

Download references

Acknowledgments

We kindly thank Kjell Olofsson and Dr. Melissa Roach for providing graphical material for Fig. 1 and Drs Urs Fischer and Totte Niittylä for reviewing this chapter. We also thank FORMAS, Swedish Research Council, VINNOVA, and Bio4Energy (the Swedish Programme for renewable energy) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sundberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felten, J., Sundberg, B. (2013). Biology, Chemistry and Structure of Tension Wood. In: Fromm, J. (eds) Cellular Aspects of Wood Formation. Plant Cell Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4_8

Download citation

Publish with us

Policies and ethics