Skip to main content

Validation and Comparison of Approaches to Respiratory Motion Estimation

  • Chapter
  • First Online:
Book cover 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The accuracy of respiratory motion estimation has a direct impact on the success of clinical applications such as diagnosis, as well as planning, delivery, and assessment of therapy for lung or other thoracic diseases. While rigid registration is well suited to validation and has reached a mature state in clinical applications, for non-rigid registration no gold-standard exists. This chapter investigates the validation of non-rigid registration accuracy with a focus on lung motion. The central questions addressed in this chapter are (1) how to measure registration accuracy, (2) how to generate ground-truth for validation, and (3) how to interpret accuracy assessment results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.grand-challenge.org/index.php/MICCAI_2010_Workshop

  2. 2.

    http://www.dir-lab.com

  3. 3.

    http://www.creatis.insa-lyon.fr/rio/popi-model

  4. 4.

    http://vessel12.grand-challenge.org

  5. 5.

    http://image.diku.dk/exact

  6. 6.

    http://www.lola11.com

  7. 7.

    Symmetric registration approaches are independent of the order of input images while asymmetric approaches are not. Naturally, a validation metric based on a specific criterion is not designed for approaches already relying on the same criterion.

References

  1. West, J., Fitzpatrick, J., Wang, M., Dawant, B., et al.: Comparison and evaluation of retrospective intermodality brain image registration techniques. J. Comput. Assist. Tomogr. 21(4), 554–566 (1997)

    Article  Google Scholar 

  2. Castillo, R., Castillo, E., Guerra, R., Johnson, V., McPhail, T., Garg, A., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54, 1849–1870 (2009)

    Article  Google Scholar 

  3. Kabus, S., Klinder, T., Murphy, K., van Ginneken, B., Lorenz, C., Pluim, J.P.W.: Evaluation of 4D-CT lung registration. In: MICCAI, vol. 5761, pp. 747–54 (2009)

    Google Scholar 

  4. Yamamoto, T., Langner, U., Loo, B.W., Shen, J., Keall, P.J.: Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 72(4), 1250–1258 (2008)

    Article  Google Scholar 

  5. Werner, R., Ehrhardt, J., Schmidt-Richberg, A., Handels, H.: Validation and comparison of a biophysical modeling approach and non-linear registration for estimation of lung motion fields in thoracic 4D CT data. In: Reinhardt, J., Pluim, J. (eds.) Proceedings of SPIE Medical Imaging, vol. 7259, pp. 0U1–0U8 (2009)

    Google Scholar 

  6. Castillo, E., Castillo, R., Zhang, Y., Guerrero, T.: Compressible image registration for thoracic computed tomography images. J. Med. Biol. Eng. 29, 222–233 (2009)

    Google Scholar 

  7. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)

    Article  Google Scholar 

  8. Brock, K.: Deformable registration accuracy consortium: results of a multi-institution deformable registration accuracy study (MIDRAS). Int. J. Radiat. Oncol. Biol. Phys. 76(2), 583–596 (2010)

    Article  Google Scholar 

  9. Murphy, K., van Ginneken, B., Reinhardt, J.M., et al.: Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans. Med. Imaging 30(11), 1901–1920 (2011)

    Article  Google Scholar 

  10. Vandemeulebroucke, J., Sarrut, D., Clarysse, P.: The POPI-model, a point-validated pixel-based breathing thorax model. In: ICCR (2007)

    Google Scholar 

  11. Murphy, K., Pluim, J., van Rikxoort, E., de Jong, P., de Hoop, B., Gietema, H., Mets, O., de Bruijne, M., Lo, P., Prokop, M., van Ginneken, B.: Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT. Med. Phys. 39(3), 1650–1662 (2012)

    Article  Google Scholar 

  12. Sarrut, D., Delhay, B., Villard, P.F., Boldea, V., Beuve, M., Clarysse, P.: A comparison framework for breathing motion estimation methods from 4-D imaging. IEEE Trans. Med. Imaging 26(12), 1636–1648 (2007)

    Article  Google Scholar 

  13. Werner, R., Ehrhardt, J., Schmidt-Richberg, A., Heiss, A., Handels, H.: Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data. Int. J. Comput. Assist. Radiol. Surg. 5(6), 595–605 (2010)

    Article  Google Scholar 

  14. Murphy, K., van Ginneken, B., Klein, S., Staring, M., de Hoop, B.J., Viergever, M.A., Pluim, J.P.W.: Semi-automatic construction of reference standards for evaluation of image registration. Med. Image Anal. 15(1), 71–84 (2011)

    Article  Google Scholar 

  15. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  16. Hartkens, T., Rohr, K., Stiehl, H.S.: Evaluation of 3D operators for the detection of anatomical point landmarks in MR and CT images. Comput. Vis. Image Underst. 86, 118–136 (2002)

    Article  Google Scholar 

  17. Werner, R., Wolf, J.C., Ehrhardt, J., Schmidt-Richberg, A., Handels, H.: Automatische Landmarkendetektion und -übertragung zur Evaluation der Registrierung von thorakalen CT-Daten. In: Deserno, T., Handels, H., Meinzer, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2010, Informatik aktuell, pp. 31–35. Springer, Heidelberg (2010)

    Google Scholar 

  18. Berlinger, K., Roth, M., Sauer, O., Vences, L., Schweikard, A.: Fully automatic detection of corresponding anatomical landmarks in volume scans of different respiratory state. Med. Phys. 33(6), 1569–1572 (2006)

    Article  Google Scholar 

  19. Likar, B., Pernus, F.: Automatic extraction of corresponding points for the registration of medical images. Med. Phys. 26(8), 1678–1686 (1999)

    Article  Google Scholar 

  20. Vik, T., Kabus, S., von Berg, J., Ens, K., Dries, S., Klinder, T., Lorenz, C.: Validation and comparison of registration methods for free-breathing 4D lung CT. In: Proceedings of SPIE Medical Imaging, vol. 6914, pp. 69,142P–1–69,142P–10 (2008)

    Google Scholar 

  21. Wan, S.Y., Higgins, W.: Symmetric region growing. IEEE Trans. Image Process. 12(9), 1007–1015 (2003)

    Article  ADS  Google Scholar 

  22. Schlathölter, T., Lorenz, C., Carlsen, I.C., Renisch, S., Deschamps, T.: Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. In: Proceedings of SPIE Medical Imaging, vol. 2, pp. 103–113 (2002)

    Google Scholar 

  23. Schaap, M., Smal, I., Metz, C., van Walsum, T., Niessen, W.: Bayesian tracking of elongated structures in 3d images. In: Proceedings of Information Processing in Medical Imaging (IPMI), vol. 4584, pp. 74–85 (2007)

    Google Scholar 

  24. Friman, O., Hindennach, M., Kühnel, C., Peitgen, H.O.: Multiple hypothesis template tracking of small 3D vessel structures. Med. Image Anal. 14(2), 160–171 (2010)

    Article  Google Scholar 

  25. Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13, 819–845 (2009)

    Article  Google Scholar 

  26. Lo, P., van Ginneken, B., Reinhardt, J., de Bruijne, M.: Extraction of airways from CT (EXACT’09). IEEE Trans. Med. Imaging 31(11), 2093–2107 (2012)

    Article  Google Scholar 

  27. Tschirren, J., McLennan, G., Palagyi, K., Hoffman, E., Sonka, M.: Matching and anatomical labeling of human airway tree. IEEE Trans. Med. Imaging 24(12), 1540–1547 (2005)

    Article  Google Scholar 

  28. Bülow, T., Lorenz, C., Wiemker, R., Honko, J.: Point based methods for automatic bronchial tree matching and labeling. In: Proceedings of SPIE Medical Imaging, vol. 6143 (2006)

    Google Scholar 

  29. Bouix, S., Martin-Fernandez, M., Ungar, L., Nakamura, M., Koo, M.S., McCarley, R.W., Shenton, M.E.: On evaluating brain tissue classifiers without a ground truth. NeuroImage 36(4), 1207–1224 (2007)

    Article  Google Scholar 

  30. Harris, E.J., Donovan, E.M., Yarnold, J.R., Coles, C.E., Evans, P.M.: Characterization of target volume changes during breast radiotherapy using implanted fiducial markers and portal imaging. Int. J. Radiat. Oncol. Biol. Phys. 73(3), 958–966 (2009)

    Article  Google Scholar 

  31. Hanna, G.G.: Hounsell, a.R., O’Sullivan, J.M.: Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin. Oncol. (R. Coll. Radiol.) 22(7), 515–525 (2010)

    Google Scholar 

  32. Crum, W., Camara, O., Hill, D.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  33. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297 (1945)

    Article  Google Scholar 

  34. Louie, A.V., Rodrigues, G., Olsthoorn, J., Palma, D., Yu, E., Yaremko, B., Ahmad, B., Aivas, I., Gaede, S.: Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother. Oncol. 95(2), 166–171 (2010)

    Article  Google Scholar 

  35. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  36. Tralins, K.S., Douglas, J.G., Stelzer, K.J., Mankoff, D.A., Silbergeld, D.L., Rostomily, R.C., Hummel, S., Scharnhorst, J., Krohn, K.A., Spence, A.M., Rostomilly, R.: Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J. Nucl. Med. 43(12), 1667–1673 (2002)

    Google Scholar 

  37. Hu, S., Hoffman, E., Reinhardt, J.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6), 490–499 (2001)

    Article  Google Scholar 

  38. van Rikxoort, E., de Hoop, B., Viergever, M., Prokop, M., van Ginneken, B.: Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med. Phys. 36(7), 2934–2947 (2009)

    Article  Google Scholar 

  39. van Rikxoort, E., van Ginneken, B., Klik, M., Prokop, M.: Supervised enhancement filters: application to fissure detection in chest CT scans. IEEE Trans. Med. Imaging 27(1), 1–10 (2008)

    Article  Google Scholar 

  40. Ukil, S., Reinhardt, J.: Anatomy-guided lung lobe segmentation in X-ray CT images. IEEE Trans. Med. Imaging 28(2), 202–214 (2009)

    Article  Google Scholar 

  41. van Rikxoort, E., Prokop, M., de Hoop, B., Viergever, M., Pluim, J.P.W., van Ginneken, B.: Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans. Med. Imaging 29(6), 1286–1296 (2010)

    Google Scholar 

  42. Lassen, B., Kuhnigk, J.M., van Rikxoort, E., Peitgen, H.O.: Interactive lung lobe segmentation and correction in tomographic images. In: Proceedings of SPIE Medical Imaging, vol. 79631S, pp. 79, 631S–1–11 (2011)

    Google Scholar 

  43. Reeves, A., Chan, A., Yankelevitz, D., Henschke, C., Kressler, B., Kostis, W.: On measuring the change in size of pulmonary nodules. IEEE Trans. Med. Imaging 25(4), 435–450 (2006)

    Article  Google Scholar 

  44. Lujan, A., Larsen, E., Balter, J., Ten Haken, R.: A method for incorporating organ motion due to breathing into 3D dose calculations. Med. Phys. 26(5), 715–720 (1999)

    Article  Google Scholar 

  45. Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305–327 (2010)

    Article  Google Scholar 

  46. Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Med. Phys. 38(1), 166 (2011)

    Article  Google Scholar 

  47. Vandemeulebroucke, J., Bernard, O., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. Med. Phys. 39(2), 1006 (2012)

    Article  Google Scholar 

  48. Christensen, G., Johnson, H.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)

    Article  Google Scholar 

  49. Kabus, S., Lorenz, C.: Fast elastic image registration. In: Grand Challenges in Medical Image Analysis, pp. 81–89 (2010)

    Google Scholar 

  50. Ding, K., Cao, K., Amelon, R., Christensen, G., Raghavan, M., Reinhardt, J.: Comparison of intensity- and jacobian-based estimates of lung regional ventilation. In: Proceedings of Third International Workshop on Pulmonary Image Analysis, pp. 49–60 (2010)

    Google Scholar 

  51. West, J.: Respiratory Physiology: The Essentials. Lippincott Williams & Wilkins, Philadelphia (2008)

    Google Scholar 

  52. Yamamoto, T., Kabus, S., Klinder, T., Lorenz, C., Loo, B., Keall, P.: Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics. Med. Phys. 38(3), 1348–1358 (2011)

    Article  Google Scholar 

  53. Pratt, P.: Pulmonary Pathology, chap. Emphysema and Chronic Airways Disease, pp. 651–69. Springer, New York (1988)

    Google Scholar 

  54. Kabus, S., Klinder, T., von Berg, J., Lorenz, C.: Functional non-rigid registration validation: a CT phantom study. In: Fischer, B., Dawant, B., Lorenz, C. (eds.) WBIR, Springer, vol. 6204, pp. 116–127 (2010)

    Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Kabus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kabus, S., Klinder, T., Murphy, K., Werner, R., Sarrut, D. (2013). Validation and Comparison of Approaches to Respiratory Motion Estimation. In: Ehrhardt, J., Lorenz, C. (eds) 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36441-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36441-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36440-2

  • Online ISBN: 978-3-642-36441-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics