Skip to main content

The Tate-Lichtenbaum Pairing on a Hyperelliptic Curve via Hyperelliptic Nets

  • Conference paper
Pairing-Based Cryptography – Pairing 2012 (Pairing 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7708))

Included in the following conference series:

Abstract

Recently, Stange proposed a new algorithm to compute the Tate pairing on an elliptic curve. Her algorithm is based on elliptic nets, which are also defined by Stange as a generalization of elliptic divisibility sequences. In this paper, we define hyperelliptic nets as a generalization of elliptic nets to hyperelliptic curves. We also give an expression for the Tate-Lichtenbaum pairing on a hyperelliptic curve in terms of hyperelliptic nets. Using this expression, we give an algorithm to compute the Tate-Lichtenbaum pairing on a hyperelliptic curve of genus 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arledge, J., Grant, D.: An explicit theorem of the square for hyperelliptic Jacobians. Michigan Math. J. 49, 485–492 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 21. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  3. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Kleinian functions, hyperelliptic Jacobians and applications. Rev. Math. Math. Phys. 10, 1–125 (1997)

    Google Scholar 

  4. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: A recursive family of differential polynomials generated by the Sylvester identity and addition theorems for hyperelliptic Kleinian functions. Funct. Anal. Appl. 31, 240–251 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistoli, A.: Fundamental Algebraic Geometry: Grothendieck’s FGA explained. Mathematical Surveys and Monographs, vol. 123. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  6. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comp. 62, 865–874 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Hone, A.N.W.: Analytic solutions and integrability for bilinear recurrences of order six. Appl. Anal. 89, 473–492 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kanayama, N.: Division polynomials and multiplication formulae of Jacobian varieties of dimension 2. Math. Proc. Cambridge Philos. Soc. 139, 399–409 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kanayama, N.: Corrections to “Division polynomials and multiplication formulae in dimension 2”. Math. Proc. Cambridge Philos. Soc. 149, 189–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Invent. Math. 7, 120–136 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maxima.sourceforge.net: Maxima, a Computer Algebra System. Version 5.25.1 (2011), http://maxima.sourceforge.net/

  12. Miller, V.S.: Short programs for functions on curves (1986) (unpublished manuscript), http://crypto.stanford.edu/miller/

  13. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17, 235–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mumford, D.: Tata Lectures on Theta I. Progress in Mathematics, vol. 28. Birkhäuser, Boston (1983)

    MATH  Google Scholar 

  15. Mumford, D.: Tata Lectures on Theta II. Progress in Mathematics, vol. 43. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

  16. Ônishi, Y.: Determinant expressions for hyperelliptic functions (with an appendix by Shigeki Matsutani). Proc. Edinb. Math. Soc. 48, 705–742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stange, K.E.: The Tate Pairing Via Elliptic Nets. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 329–348. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Stange, K.E.: Elliptic nets and elliptic curves. Algebra Number Theory 5, 197–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Uchida, Y.: Division polynomials and canonical local heights on hyperelliptic Jacobians. Manuscripta Math. 134, 273–308 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. PARI/GP, version 2.3.4, Bordeaux (2008), http://pari.math.u-bordeaux.fr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uchida, Y., Uchiyama, S. (2013). The Tate-Lichtenbaum Pairing on a Hyperelliptic Curve via Hyperelliptic Nets. In: Abdalla, M., Lange, T. (eds) Pairing-Based Cryptography – Pairing 2012. Pairing 2012. Lecture Notes in Computer Science, vol 7708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36334-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36334-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36333-7

  • Online ISBN: 978-3-642-36334-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics