Skip to main content

Garbageless Reversible Implementation of Integer Linear Transformations

  • Conference paper
Reversible Computation (RC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7581))

Included in the following conference series:

Abstract

Discrete linear transformations are important tools in information processing. Many such transforms are injective and therefore prime candidates for a physically reversible implementation into hardware. We present here reversible digital implementations of different integer transformations on four inputs. The resulting reversible circuit is able to perform both the forward transform and the inverse transform. Which of the two computations that actually is performed, simply depends on the orientation of the circuit when it is inserted in a computer board (if one takes care to provide the encapsulation of symmetrical power supplies). Our analysis indicates that the detailed structure of such a reversible design strongly depends on the prime factors of the determinant of the transform: a determinant equal to a power of 2 leads to an efficient garbage-free design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skoneczny, M., Van Rentergem, Y., De Vos, A.: Reversible Fourier transform chip. In: Proceedings of the 15th International Conference on Mixed Design of Integrated Circuits and Systems, Poznań, pp. 281–286 (2008)

    Google Scholar 

  2. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis 3, 186–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Physical Review A 54, 147–153 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuccaro, S., Draper, T., Kutin, S., Moulton, D.: A new quantum ripple-carry addition circuit, arXiv:quant-ph/0410184v1

    Google Scholar 

  7. Thomsen, M., Axelsen, H.: Parallelization of reversible ripple-carry adders. Parallel Processing Letters 19, 205–222 (2009)

    Article  MathSciNet  Google Scholar 

  8. De Vos, A.: Reversible computing. Wiley–VCH, Weinheim (2010)

    Book  MATH  Google Scholar 

  9. Burignat, S., De Vos, A.: Test of a majority-based reversible (quantum) 4 bit ripple-adder in adiabatic calculation. In: Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems, Gliwice, pp. 368–373 (2011)

    Google Scholar 

  10. De Vos, A.: Reversible computer hardware. Electronic Notes in Theoretical Computer Science 253, 17–22 (2010)

    Article  Google Scholar 

  11. Malvar, H., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity transform and quantization in H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology 13, 598–603 (2003)

    Article  Google Scholar 

  12. Hadamard transform. Wikipedia (2012)

    Google Scholar 

  13. De Vos, A., De Baerdemacker, S.: Decomposition of a linear reversible computer: digital versus analog. International Journal of Unconventional Computing 6, 239–263 (2010)

    Google Scholar 

  14. De Vos, A., Burignat, S., Thomsen, M.: Reversible implementation of a discrete linear transformation. International Journal of Multiple-valued Logic and Soft Computing 18, 25–35 (2012)

    MATH  Google Scholar 

  15. Bruekers, F., van den Enden, A.: New networks for perfect inversion and perfect reconstruction. IEEE Journal on Selected Areas in Communications 10, 129–137 (1992)

    Article  MATH  Google Scholar 

  16. Yokoyama, T., Axelsen, H., Glück, R.: Optimizing reversible simulation of injective functions. International Journal of Multiple-valued Logic and Soft Computing 18, 5–24 (2012)

    MATH  Google Scholar 

  17. Baker, A.: Matrix Groups. Springer, London (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burignat, S., Vermeirsch, K., De Vos, A., Thomsen, M.K. (2013). Garbageless Reversible Implementation of Integer Linear Transformations. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36315-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36314-6

  • Online ISBN: 978-3-642-36315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics