Skip to main content

Equilibrium Configurations of a Kirchhoff Elastic Rod under Quasi-static Manipulation

  • Conference paper

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. The curve traced by this wire can be described as a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. The set of all local solutions to this problem is the configuration space of the wire under quasi-static manipulation. We will show that this configuration space is a smooth manifold of finite dimension that can be parameterized by a single chart. Working in this chart—rather than in the space of boundary conditions—makes the problem of manipulation planning very easy to solve. Examples in simulation illustrate our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint, vol. 87. Springer, Berlin (2004)

    MATH  Google Scholar 

  2. Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. Journal of Computational Biology 9(2), 149–168 (2002)

    Article  Google Scholar 

  3. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, vol. 107. Springer, New York (2005)

    MATH  Google Scholar 

  4. Asano, Y., Wakamatsu, H., Morinaga, E., Arai, E., Hirai, S.: Deformation path planning for manipulation of flexible circuit boards. In: IEEE/RSJ Int. Conf. Int. Rob. Sys. (2010)

    Google Scholar 

  5. Bell, M., Balkcom, D.: Knot tying with single piece fixtures. In: Int. Conf. Rob. Aut. (2008)

    Google Scholar 

  6. van den Berg, J., Miller, S., Goldberg, K., Abbeel, P.: Gravity-based robotic cloth folding. In: WAFR (2011)

    Google Scholar 

  7. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 1–12 (2008)

    Article  Google Scholar 

  8. Biggs, J., Holderbaum, W., Jurdjevic, V.: Singularities of optimal control problems on some 6-d lie groups. IEEE Trans. Autom. Control 52(6), 1027–1038 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bloch, A., Krishnaprasad, P., Marsden, J., Ratiu, T.: The Euler-Poincaré equations and double bracket dissipation. Communications In Mathematical Physics 175(1), 1–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chirikjian, G.S., Burdick, J.W.: The kinematics of hyper-redundant robot locomotion. IEEE Trans. Robot. Autom. 11(6), 781–793 (1995)

    Article  Google Scholar 

  11. Choset, H., Lynch, K., Hutchinson, S., Kanto, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

    Google Scholar 

  12. Clements, T.N., Rahn, C.D.: Three-dimensional contact imaging with an actuated whisker. IEEE Trans. Robot. 22(4), 844–848 (2006)

    Article  Google Scholar 

  13. Gopalakrishnan, K., Goldberg, K.: D-space and deform closure grasps of deformable parts. International Journal of Robotics Research 24(11), 899–910 (2005)

    Article  Google Scholar 

  14. Hoffman, K.A.: Methods for determining stability in continuum elastic-rod models of dna. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362(1820), 1301–1315 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hopcroft, J.E., Kearney, J.K., Krafft, D.B.: A case study of flexible object manipulation. The International Journal of Robotics Research 10(1), 41–50 (1991)

    Article  Google Scholar 

  16. Inoue, H., Inaba, H.: Hand-eye coordination in rope handling. In: ISRR, pp. 163–174 (1985)

    Google Scholar 

  17. Jansen, R., Hauser, K., Chentanez, N., van der Stappen, F., Goldberg, K.: Surgical retraction of non-uniform deformable layers of tissue: 2d robot grasping and path planning. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., pp. 4092–4097 (2009)

    Google Scholar 

  18. Javdani, S., Tandon, S., Tang, J., O’Brien, J.F., Abbeel, P.: Modeling and perception of deformable one-dimensional objects. In: Int. Conf. Rob. Aut., Shanghai, China (2011)

    Google Scholar 

  19. Kavraki, L.E., Svetska, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  20. Keshavarz, A., Wang, Y., Boyd, S.: Imputing a convex objective function. In: IEEE Multi-Conference on Systems and Control (2011)

    Google Scholar 

  21. Lamiraux, F., Kavraki, L.E.: Planning paths for elastic objects under manipulation constraints. International Journal of Robotics Research 20(3), 188–208 (2001)

    Article  Google Scholar 

  22. Langer, J., Singer, D.: The total squared curvature of closed curves. Journal of Differential Geometry 20, 1–22 (1984)

    MATH  MathSciNet  Google Scholar 

  23. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Book  Google Scholar 

  24. LaValle, S.M.: Planning algorithms. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  25. Lee, J.M.: Introduction to smooth manifolds, vol. 218. Springer, New York (2003)

    Google Scholar 

  26. Lin, Q., Burdick, J., Rimon, E.: A stiffness-based quality measure for compliant grasps and fixtures. IEEE Trans. Robot. Autom. 16(6), 675–688 (2000)

    Article  Google Scholar 

  27. Marsden, J.E., Ratiu, T.S.: Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  28. McCarthy, Z., Bretl, T.: Mechanics and manipulation of planar elastic kinematic chains. In: IEEE Int. Conf. Rob. Aut. St. Paul, MN (2012)

    Google Scholar 

  29. Moll, M., Kavraki, L.E.: Path planning for deformable linear objects. IEEE Trans. Robot. 22(4), 625–636 (2006)

    Article  Google Scholar 

  30. Rucker, D.C., Webster, R.J., Chirikjian, G.S., Cowan, N.J.: Equilibrium conformations of concentric-tube continuum robots. Int. J. Rob. Res. 29(10), 1263–1280 (2010)

    Article  Google Scholar 

  31. Sachkov, Y.: Conjugate points in the euler elastic problem. Journal of Dynamical and Control Systems 14(3), 409–439 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sachkov, Y.: Maxwell strata in the euler elastic problem. Journal of Dynamical and Control Systems 14(2), 169–234 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Saha, M., Isto, P.: Manipulation planning for deformable linear objects. IEEE Trans. Robot. 23(6), 1141–1150 (2007)

    Article  Google Scholar 

  34. Sánchez, G., Latombe, J.C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. Rob. Res. 21(1), 5–26 (2002)

    Article  Google Scholar 

  35. Schwarzer, F., Saha, M., Latombe, J.C.: Exact collision checking of robot paths. In: WAFR, Nice, France (2002)

    Google Scholar 

  36. Solomon, J.H., Hartmann, M.J.Z.: Extracting object contours with the sweep of a robotic whisker using torque information. Int. J. Rob. Res. 29(9), 1233–1245 (2010)

    Article  Google Scholar 

  37. Starostin, E.L., van der Heijden, G.H.M.: Tension-induced multistability in inextensible helical ribbons. Physical Review Letters 101(8), 084,301 (2008)

    Google Scholar 

  38. Takamatsu, J., Morita, T., Ogawara, K., Kimura, H., Ikeuchi, K.: Representation for knot-tying tasks. IEEE Trans. Robot. 22(1), 65–78 (2006)

    Article  Google Scholar 

  39. Tanner, H.: Mobile manipulation of flexible objects under deformation constraints. IEEE Trans. Robot. 22(1), 179–184 (2006)

    Article  Google Scholar 

  40. Wakamatsu, H., Arai, E., Hirai, S.: Knotting/unknotting manipulation of deformable linear objects. The International Journal of Robotics Research 25(4), 371–395 (2006)

    Article  Google Scholar 

  41. Walsh, G., Montgomery, R., Sastry, S.: Optimal path planning on matrix lie groups. In: IEEE Conference on Decision and Control, vol. 2, pp. 1258–1263 (1994)

    Google Scholar 

  42. Webster, R.J., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Rob. Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  43. Yamakawa, Y., Namiki, A., Ishikawa, M.: Motion planning for dynamic folding of a cloth with two high-speed robot hands and two high-speed sliders. In: Int. Conf. Rob. Aut., pp. 5486–5491 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Bretl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bretl, T., McCarthy, Z. (2013). Equilibrium Configurations of a Kirchhoff Elastic Rod under Quasi-static Manipulation. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics