Skip to main content

Sampling Extremal Trajectories for Planar Rigid Bodies

  • Conference paper
Book cover Algorithmic Foundations of Robotics X

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

This paper presents an approach to finding the time-optimal trajectories for a simple rigid-body model of a mobile robot in an obstacle-free plane. Previous work has used Pontryagin’s Principle to find strong necessary conditions on time-optimal trajectories of the rigid body; trajectories satisfying these conditions are called extremal trajectories. The main contribution of this paper is a method for sampling the extremal trajectories sufficiently densely to guarantee that for any pair of start and goal configurations, a trajectory can be found that (provably) approximately reaches the goal, approximately optimally; the quality of the approximation is only limited by the availability of computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkcom, D.J., Kavathekar, P.A., Mason, M.T.: Time-optimal trajectories for an omni-directional vehicle. International Journal of Robotics Research 25(10), 985–999 (2006)

    Article  Google Scholar 

  2. Balkcom, D.J., Mason, M.T.: Time optimal trajectories for differential drive vehicles. International Journal of Robotics Research 21(3), 199–217 (2002)

    Article  Google Scholar 

  3. Barraquand, J., Latombe, J.-C.: Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. In: IEEE International Conference on Robotics and Automation, Sacramento, CA, pp. 2328–2335 (1991)

    Google Scholar 

  4. Dubins, L.E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79, 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fernandes, C., Gurvits, L., Li, Z.X.: A variational approach to optimal nonholonomic motion planning. In: IEEE International Conference on Robotics and Automation, pp. 680–685 (April 1991)

    Google Scholar 

  6. Furtuna, A.A.: Minimum time kinematic trajectories for self-propelled rigid bodies in the unobstructed plane. Dartmouth PhD thesis, Dartmouth College (2004)

    Google Scholar 

  7. Furtuna, A.A., Balkcom, D.J.: Generalizing Dubins curves: Minimum-time sequences of body-fixed rotations and translations in the plane. International Journal of Robotics Research 29(6), 703–726 (2010)

    Article  Google Scholar 

  8. Furtuna, A.A., Lu, W., Wang, W., Balkcom, D.J.: Minimum-time trajectories for kinematic mobile robots and other planar rigid bodies with finite control sets. In: IROS, pp. 4321–4328 (2011)

    Google Scholar 

  9. Hayet, J.-B., Esteves, C., Murrieta-Cid, R.: A Motion Planner for Maintaining Landmark Visibility with a Differential Drive Robot. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. STAR, vol. 57, pp. 333–347. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  11. Laumond, J.-P.: Feasible trajectories for mobile robots with kinematic and environment constraints. In: International Conference on Intelligent Autonomous Systems, pp. 346–354 (1986)

    Google Scholar 

  12. LaValle, S.M.: Planning Algorithms. Cambridge Press (2006), also freely available online at http://planning.cs.uiuc.edu

  13. Lynch, K.M.: The mechanics of fine manipulation by pushing. In: IEEE International Conference on Robotics and Automation, Nice, France, pp. 2269–2276 (1992)

    Google Scholar 

  14. Oberle, H.J., Grimm, W.: BNDSCO: a program for the numerical solution of optimal control problems (1989)

    Google Scholar 

  15. Ratliff, N., Zucker, M., Andrew (Drew) Bagnell, J., Srinivasa, S.: CHOMP: Gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, ICRA (May 2009)

    Google Scholar 

  16. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  17. Souères, P., Boissonnat, J.-D.: Optimal Trajectories for Nonholonomic Mobile Robots. In: Laumond, J.-P. (ed.) Robot Motion Planning and Control. LNCIS, vol. 229, pp. 93–170. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Sussmann, H., Tang, G.: Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. SYCON 91-10, Department of Mathematics, Rutgers University, New Brunswick, NJ 08903 (1991)

    Google Scholar 

  19. Vendittelli, M., Laumond, J.P., Nissoux, C.: Obstacle distance for car-like robots. IEEE Transactions on Robotics and Automation 15(4), 678–691 (1999)

    Article  Google Scholar 

  20. Wang, W., Balkcom, D.J.: Analytical time-optimal trajectories for an omni-directional vehicle. In: IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, W., Balkcom, D. (2013). Sampling Extremal Trajectories for Planar Rigid Bodies. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics