Skip to main content

Myelodysplastic/Myeloproliferative Neoplasms

  • Chapter
  • First Online:
Myelodysplastic Syndromes

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1246 Accesses

Abstract

Myeloid malignancies exemplified by acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs) are all characterized by abnormal proliferation of stem cells. AML is characterized by proliferation of myeloid blasts that ultimately perturb normal bone marrow (BM) function and suppress hematopoiesis. The hallmarks of MDS are cytopenias (anemia, leukopenia, or thrombocytopenia), impaired differentiation in one or more of myeloid cell lines, and ineffective hematopoiesis (Tiu et al. 2011a). MPNs manifest with proliferation of one or more cell lines in the BM with accompanying BM fibrosis and extramedullary hematopoiesis (Fig. 1). When features of both MDS and MPN coexist in the same patient, the disease is called MDS/MPN overlap neoplasms. The recognition that some MDS patients have overlapping MPN features led to the coining of the term MDS/MPN overlap. This group was first described in 1997 at the clinical advisory meeting of the World Health Organization (WHO) (Harris et al. 1999) and later adapted in the 2001 WHO classification (Harris et al. 2001). As in the case of MDS and MPNs, MDS/MPN patients are also at risk for AML evolution. Within this overlapping class, four different disease entities were classified: Juvenile myelomonocytic leukemia (JMML), chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia (BCR-ABL1 negative) (aCML), and MDS/MPN-unclassifiable (MDS/MPN-U), which also included the provisional disease category, refractory anemia with ring sideroblast associated with marked thrombocytosis (RARS-T). Of note, each of these disease entities has a defined natural history, influenced by a variety of factors such as BM blast counts, presence of concomitant diseases (e.g., systemic mastocytosis with associated clonal hematologic non-mast cell lineage disease [SM-AHNMD]), and different cytogenetic and epigenetic/molecular profile which may explain the clinicopathologic diversity of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J et al (2007) Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer 109(4):713–717

    Article  PubMed  CAS  Google Scholar 

  • Aul C, Gattermann N, Heyll A, Germing U, Derigs G, Schneider W (1992) Primary myelodysplastic syndromes: analysis of prognostic factors in 235 patients and proposals for an improved scoring system. Leukemia 6(1):52–59

    PubMed  CAS  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51(2):189–199

    PubMed  CAS  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick H et al (1994) The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol 87(4):746–754

    Article  PubMed  CAS  Google Scholar 

  • Bennett JM, Young MS, Liesveld JL, Paietta E, Miller KB, Lazarus HM et al (2001) Phase II study of combination human recombinant GM-CSF with intermediate-dose cytarabine and mitoxantrone chemotherapy in patients with high-risk myelodysplastic syndromes (RAEB, RAEBT, and CMML): an Eastern Cooperative Oncology Group Study. Am J Hematol 66(1):23–27

    Article  PubMed  CAS  Google Scholar 

  • Beran M, Estey E, O’Brien S, Cortes J, Koller CA, Giles FJ et al (1999) Topotecan and cytarabine is an active combination regimen in myelodysplastic syndromes and chronic myelomonocytic leukemia. J Clin Oncol 17(9):2819–2830

    PubMed  CAS  Google Scholar 

  • Bradford CR, Smith SR, Wallis JP (1993) Pericardial extramedullary haemopoiesis in chronic myelomonocytic leukaemia. J Clin Pathol 46(7):674–675

    Article  PubMed  CAS  Google Scholar 

  • Breccia M, Biondo F, Latagliata R, Carmosino I, Mandelli F, Alimena G (2006) Identification of risk factors in atypical chronic myeloid leukemia. Haematologica 91(11):1566–1568

    PubMed  Google Scholar 

  • Busque L, Gilliland DG, Prchal JT, Sieff CA, Weinstein HJ, Sokol JM et al (1995) Clonality in juvenile chronic myelogenous leukemia. Blood 85(1):21–30

    PubMed  CAS  Google Scholar 

  • Castleberry RP, Loh ML, Jayaprakash N et al (2011) Phase II Window Study of the Farnesyltransferase Inhibitor R115777 (Zarnestra(R)) in Untreated Juvenile Myelomonocytic Leukemia (JMML): A Children’s Oncology Group Study. Blood (ASH Annu Meet Abstr) 106:2587

    Google Scholar 

  • Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML (2009) Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res 33(3):355–362

    Article  PubMed  Google Scholar 

  • Cooper LJ, Shannon KM, Loken MR, Weaver M, Stephens K, Sievers EL (2000) Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood 96(6):2310–2313

    PubMed  CAS  Google Scholar 

  • Costa R, Abdulhaq H, Haq B, Shadduck RK, Latsko J, Zenati M et al (2011) Activity of azacitidine in chronic myelomonocytic leukemia. Cancer 117(12):2690–2696

    Article  PubMed  CAS  Google Scholar 

  • Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360(22):2289–2301

    Article  PubMed  Google Scholar 

  • Economopoulos T, Papageorgiou E, Stathakis N, Asprou N, Karmas P, Dervenoulas J et al (1992) Treatment of myelodysplastic syndromes with human granulocytic-macrophage colony stimulating factor (GM-CSF) or GM-CSF combined with low-dose cytosine arabinoside. Eur J Haematol 49(3):138–142

    Article  PubMed  CAS  Google Scholar 

  • Eissa H, Gooley TA, Sorror ML, Nguyen F, Scott BL, Doney K et al (2011) Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol Blood Marrow Transplant 17(6):908–915

    Article  PubMed  Google Scholar 

  • Emanuel PD (2008) Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia 22(7):1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J et al (1999) RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 13(1):32–37

    Article  PubMed  CAS  Google Scholar 

  • Galton DA (1992) Haematological differences between chronic granulocytic leukaemia, atypical chronic myeloid leukaemia, and chronic myelomonocytic leukaemia. Leuk Lymphoma 7(5–6):343–350

    Article  PubMed  CAS  Google Scholar 

  • Gelsi-Boyer V, Trouplin V, Adelaide J, Aceto N, Remy V, Pinson S et al (2008) Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 8:299

    Article  PubMed  Google Scholar 

  • Gerhartz HH, Marcus R, Delmer A, Zwierzina H, Suciu S, Dardenne M et al (1994) A randomized phase II study of low-dose cytosine arabinoside (LD-AraC) plus granulocyte-macrophage colony-stimulating factor (rhGM-CSF) in myelodysplastic syndromes (MDS) with a high risk of developing leukemia. EORTC Leukemia Cooperative Group. Leukemia 8(1):16–23

    PubMed  CAS  Google Scholar 

  • Germing U, Gattermann N, Minning H, Heyll A, Aul C (1998) Problems in the classification of CMML – ­dysplastic versus proliferative type. Leuk Res 22(10): 871–878

    Article  PubMed  CAS  Google Scholar 

  • Germing U, Gattermann N, Strupp C, Aivado M, Aul C (2000) Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: a retrospective analysis of 1600 patients. Leuk Res 24(12):983–992

    Article  PubMed  CAS  Google Scholar 

  • Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP (2008) Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111(3):1534–1542

    Article  PubMed  CAS  Google Scholar 

  • Gotlib J (2012) World Health Organization-defined eosinophilic disorders: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 87(9):903–914

    Article  PubMed  Google Scholar 

  • Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 17(12):3835–3849

    PubMed  CAS  Google Scholar 

  • Hasle H, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U et al (1999) Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia 13(3):376–385

    Article  PubMed  CAS  Google Scholar 

  • Hasle H, Baumann I, Bergstrasser E, Fenu S, Fischer A, Kardos G et al (2004) The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia 18(12):2008–2014

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JM, del Canizo MC, Cuneo A, Garcia JL, Gutierrez NC, Gonzalez M et al (2000) Clinical, hematological and cytogenetic characteristics of atypical chronic myeloid leukemia. Ann Oncol 11(4): 441–444

    Article  PubMed  CAS  Google Scholar 

  • Jabbour E, Kantarjian H, Cortes J, Thomas D, Garcia-Manero G, Ferrajoli A et al (2007) PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer 110(9):2012–2018

    Article  PubMed  CAS  Google Scholar 

  • Jaffe EL, Harris NL, Stein HJ, Vardiman JW (2001) Pathology and genetics: tumours of haematopoietic and lymphoid tissues (WHO classification of tumours). IRAC Press, Lyon

    Google Scholar 

  • Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al (2011) Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 118(14):3932–3941

    Article  PubMed  CAS  Google Scholar 

  • Koldehoff M, Beelen DW, Trenschel R, Steckel NK, Peceny R, Ditschkowski M et al (2004) Outcome of hematopoietic stem cell transplantation in patients with atypical chronic myeloid leukemia. Bone Marrow Transplant 34(12):1047–1050

    Article  PubMed  CAS  Google Scholar 

  • Kosmider O, Gelsi-Boyer V, Ciudad M, Racoeur C, Jooste V, Vey N et al (2009) TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94(12):1676–1681

    Article  PubMed  CAS  Google Scholar 

  • Kroger N, Zabelina T, Guardiola P, Runde V, Sierra J, Van Biezen A et al (2002) Allogeneic stem cell transplantation of adult chronic myelomonocytic leukaemia. A report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 118(1):67–73

    Article  PubMed  Google Scholar 

  • Kuo MC, Liang DC, Huang CF, Shih YS, Wu JH, Lin TL et al (2009) RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia 23(8):1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Kurzrock R, Bueso-Ramos CE, Kantarjian H, Freireich E, Tucker SL, Siciliano M et al (2001) BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol 19(11):2915–2926

    PubMed  CAS  Google Scholar 

  • Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C et al (2005) Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 105(1):410–419

    Article  PubMed  CAS  Google Scholar 

  • Loh ML (2010) Childhood myelodysplastic syndrome: focus on the approach to diagnosis and treatment of juvenile myelomonocytic leukemia. Hematology Am Soc Hematol Educ Program 2010:357–362

    Article  PubMed  Google Scholar 

  • Loh ML (2011) Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 152(6):677–687

    Article  PubMed  CAS  Google Scholar 

  • Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z et al (2010) Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 24(10):1799–1804

    Article  PubMed  CAS  Google Scholar 

  • Makishima H, Jankowska AM, McDevitt MA, O’Keefe C, Dujardin S, Cazzolli H et al (2011) CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 117(21):e198–e206

    Article  PubMed  CAS  Google Scholar 

  • Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A et al (2012) Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 119(14):3203–3210

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Sakashita K, Taira C, Tanaka-Yanagisawa M, Yanagisawa R, Shiohara M et al (2010) Quantitative assessment of PTPN11 or RAS mutations at the neonatal period and during the clinical course in patients with juvenile myelomonocytic leukaemia. Br J Haematol 148(4):593–599

    Article  PubMed  CAS  Google Scholar 

  • Morel P, Hebbar M, Lai JL, Duhamel A, Preudhomme C, Wattel E et al (1993) Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia 7(9):1315–1323

    PubMed  CAS  Google Scholar 

  • Mufti GJ, Stevens JR, Oscier DG, Hamblin TJ, Machin D (1985) Myelodysplastic syndromes: a scoring system with prognostic significance. Br J Haematol 59(3):425–433

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu H, Makishima H, Maciejewski JP (2012) Chronic myelomonocytic leukemia and atypical chronic myeloid leukemia: novel pathogenetic lesions. Semin Oncol 39(1):67–73

    Google Scholar 

  • Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH et al (2002) Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood 99(3):840–849

    Article  PubMed  CAS  Google Scholar 

  • Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365(15):1384–1395

    Article  PubMed  CAS  Google Scholar 

  • Park HD, Lee SH, Sung KW, Koo HH, Jung NG, Cho B et al (2012) Gene mutations in the Ras pathway and the prognostic implication in Korean patients with juvenile myelomonocytic leukemia. Ann Hematol 91(4):511–517

    Article  PubMed  CAS  Google Scholar 

  • Passmore SJ, Hann IM, Stiller CA, Ramani P, Swansbury GJ, Gibbons B et al (1995) Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood 85(7):1742–1750

    PubMed  CAS  Google Scholar 

  • Perez B, Kosmider O, Cassinat B, Renneville A, Lachenaud J, Kaltenbach S et al (2010) Genetic typing of CBL, ASXL1, RUNX1, TET2 and JAK2 in juvenile myelomonocytic leukaemia reveals a genetic profile distinct from chronic myelomonocytic leukaemia. Br J Haematol 151(5):460–468

    Google Scholar 

  • Quintas-Cardama A, Kantarjian H, O’Brien S, Jabbour E, Giles F, Ravandi F et al (2006) Activity of 9-nitro-camptothecin, an oral topoisomerase I inhibitor, in myelodysplastic syndrome and chronic myelomonocytic leukemia. Cancer 107(7):1525–1529

    Article  PubMed  CAS  Google Scholar 

  • Raygada M, Arthur DC, Wayne AS, Rennert OM, Toretsky JA, Stratakis CA (2010) Juvenile xanthogranuloma in a child with previously unsuspected neurofibromatosis type 1 and juvenile myelomonocytic leukemia. Pediatr Blood Cancer 54(1):173–175

    Article  PubMed  Google Scholar 

  • Reiter A, Invernizzi R, Cross NC, Cazzola M (2009) Molecular basis of myelodysplastic/myeloproliferative neoplasms. Haematologica 94(12):1634–1638

    Google Scholar 

  • Sanz GF, Sanz MA, Vallespi T, Canizo MC, Torrabadella M, Garcia S et al (1989) Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood 74(1):395–408

    PubMed  CAS  Google Scholar 

  • Siitonen T, Timonen T, Juvonen E, Terava V, Kutila A, Honkanen T et al (2007) Valproic acid combined with 13-cis retinoic acid and 1,25-dihydroxyvitamin D3 in the treatment of patients with myelodysplastic syndromes. Haematologica 92(8):1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Such E, Cervera J, Costa D, Sole F, Vallespi T, Luno E et al (2011) Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica 96(3):375–383

    Article  PubMed  Google Scholar 

  • Sugimoto Y, Muramatsu H, Makishima H, Prince C, Jankowska AM, Yoshida N et al (2010) Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br J Haematol 150(1):83–87

    PubMed  CAS  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Szpurka H, Jankowska AM, Makishima H, Bodo J, Bejanyan N, Hsi ED et al (2010) Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations. Leuk Res 34(8):969–973

    Google Scholar 

  • Tiu RV, Visconte V, Traina F, Schwandt A, Maciejewski JP (2011a) Updates in cytogenetics and molecular markers in MDS. Curr Hematol Malig Rep 6(2):126–135

    Article  PubMed  Google Scholar 

  • Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A et al (2011b) Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117(17):4552–4560

    Article  PubMed  CAS  Google Scholar 

  • Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al (2012a) SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 26(3):542–545

    Article  PubMed  CAS  Google Scholar 

  • Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F et al (2012b) SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 120(16):3173–3186

    Article  PubMed  CAS  Google Scholar 

  • Wattel E, Guerci A, Hecquet B, Economopoulos T, Copplestone A, Mahe B et al (1996) A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group. Blood 88(7):2480–2487

    PubMed  CAS  Google Scholar 

  • Williamson PJ, Kruger AR, Reynolds PJ, Hamblin TJ, Oscier DG (1994) Establishing the incidence of myelodysplastic syndrome. Br J Haematol 87(4):743–745

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478(7367):64–69

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Doisaki S, Kojima S (2012) Current management of juvenile myelomonocytic leukemia and the impact of RAS mutations. Paediatr Drugs 14(3):157–163

    Article  PubMed  Google Scholar 

  • Yoshimi A, Bader P, Matthes-Martin S, Stary J, Sedlacek P, Duffner U et al (2005) Donor leukocyte infusion after hematopoietic stem cell transplantation in patients with juvenile myelomonocytic leukemia. Leukemia 19(6):971–977

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw P. Maciejewski MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bupathi, M., Tiu, R.V., Maciejewski, J.P. (2013). Myelodysplastic/Myeloproliferative Neoplasms. In: Myelodysplastic Syndromes. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36229-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36229-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36228-6

  • Online ISBN: 978-3-642-36229-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics