Skip to main content

Arthropod Segmentation and Tagmosis

  • Chapter
  • First Online:
Book cover Arthropod Biology and Evolution

Abstract

According to a well-consolidated tradition, the body of arthropods is described in terms of segments and tagmata. Even the oldest names for these animals, Aristotle’s έντομα [entoma, internally (sub)divided] and Linnaeus’ Latin equivalent Insecta, now restricted to one of the major arthropod subgroups, already referred to the modular organization of the body. In the idealistic perspective of the past, this trait, more than the presence of articulated appendages to which the current name of arthropods refers, was considered the defining attribute for the body plan of these animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Kaufman TC (2000a) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    Article  CAS  Google Scholar 

  • Abzhanov A, Kaufman TC (2000b) Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127:2239–2249

    CAS  Google Scholar 

  • Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–119

    Article  PubMed  CAS  Google Scholar 

  • Averof M, Akam M (1995) Hox genes and the diversification of insect and crustacean body plans. Nature 376:420–423

    Article  PubMed  CAS  Google Scholar 

  • Bateson W (1894) Materials for the study of variation treated with especial regard to discontinuity in the origin of species. Macmillan, London

    Book  Google Scholar 

  • Berto D, Fusco G, Minelli A (1997) Segmental units and shape control in Chilopoda. Ent Scand Suppl 51:61–70

    Google Scholar 

  • Bonato L, Foddai D, Minelli A (2003) Evolutionary trends and patterns in centipede segment number based on a cladistic analysis of Mecistocephalidae (Chilopoda: Geophilomorpha). Syst Ent 28:539–579

    Article  Google Scholar 

  • Bonato L, Edgecombe GD, Zapparoli M (2011) Chilopoda—taxonomic overview. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology. The Myriapoda, vol 1. Brill, Leiden, pp 363–443

    Google Scholar 

  • Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea)—an immunohistochemical study and 3D reconstruction. J Morphol 271:169–189

    PubMed  Google Scholar 

  • Brolemann HW (1935) Faune de France 29. Myriapodes Diplopodes (Chilognathes I). Lechevalier, Paris

    Google Scholar 

  • Brusca RC, Brusca GJ (2002) Invertebrates, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Budd GE (2001) Why are arthropods segmented? Evol Dev 3:332–342

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Chagas A Jr, Edgecombe GD, Minelli A (2008) Variability in trunk segmentation in the centipede order Scolopendromorpha: a remarkable new species of Scolopendropsis Brandt (Chilopoda: Scolopendridae) from Brazil. Zootaxa 1888:36–46

    Google Scholar 

  • Colless DH, McAlpine DK (1991) Diptera. In: CSIRO (ed) The insects of Australia, 2nd edn. Melbourne University Press, Melbourne, pp 717–786

    Google Scholar 

  • CSIRO (1991) The insects of Australia, 2nd edn. Melbourne University Press, Melbourne

    Google Scholar 

  • Dahl E (1991) Crustacea Phyllopoda and Malacostraca: a reappraisal of cephalic and thoracic shield and fold systems and their evolutionary significance. Phil Trans R Soc B 334:1–26

    Article  Google Scholar 

  • Deutsch JS, Mouchel-Vielh E (2003) Hox genes and the crustacean body plan. BioEssays 25:878–887

    Article  PubMed  CAS  Google Scholar 

  • Enghoff H (2011) Trans-segmental serial colour patterns in millipedes and their developmental interpretation (Diplopoda). Int J Myr 6:1–27

    Google Scholar 

  • Enghoff H, Dohle W, Blower JG (1993) Anamorphosis in millipedes (Diplopoda)—the present state of knowledge and phylogenetic considerations. Zool J Linn Soc 109:103–234

    Article  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122

    Article  PubMed  Google Scholar 

  • Fusco G (2005) Trunk segment numbers and sequential segmentation in myriapods. Evol Dev 7:608–617

    Article  PubMed  Google Scholar 

  • Fusco G (2008) Morphological nomenclature, between patterns and processes: segments and segmentation as a paradigmatic case. In: Minelli A, Bonato L, Fusco G (eds) Updating the linnaean heritage: names as tools for thinking about animals and plants. Zootaxa 1950:96–102

    Google Scholar 

  • Fusco G, Minelli A (2000) Measuring morphological complexity of segmented animals: centipedes as model systems. J Evol Biol 13:38–46

    Article  Google Scholar 

  • Harrison L (1914) On some Pauropoda from New South Wales. Proc Linn Soc NS Wales 39:615–634

    Google Scholar 

  • Hilken G, Müller CHG, Sombke A, Wirkner CS, Rosenberg J (2011) Chilopoda—tracheal system. In Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology. The Myriapoda, vol 1. Brill, Leiden, pp 137–155

    Google Scholar 

  • Hoffman RL (1982) Diplopoda. In: Parker SP (ed) Synopsis and classification of living organisms, vol 2. Mc Graw-Hill, New York, pp 689–724

    Google Scholar 

  • Hoffman RL (2005) Monograph of the Gomphodesmidae, a family of African polydesmoid millipeds. Naturhistorisches Museum Wien, Wien

    Google Scholar 

  • Horne DJ, Schön I, Smith RJ, Martens K (2005) What are Ostracoda? A cladistic analysis of the extant superfamilies of the subclasses Myodocopa and Podocopa (Crustacea Ostracoda). In: Koenemann S et al (eds) Crustacea and arthropod relationships (Crustacean Issues 16). Taylor and Francis, Boca Raton, pp 249–273

    Chapter  Google Scholar 

  • Hughes NC, Minelli A, Fusco G (2006) The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32:602–627

    Article  Google Scholar 

  • Huys R (1991) Tantulocarida (Crustacea: Maxillopoda): a new taxon from the temporary meiobenthos. Mar Ecol 12:1–34

    Article  Google Scholar 

  • Huys R, Boxshall GA (1991) Copepod evolution. Ray Society, London

    Google Scholar 

  • Huys R, Boxshall GA, Lincoln R (1993) The tantulocaridan life cycle: the circle closed? J Crust Biol 13:432–442

    Article  Google Scholar 

  • Ito A, Aoki MN, Yahata K, Wada H (2011) Complicated evolution of the caprellid (Crustacea: Malacostraca: Peracarida: Amphipoda) body plan, reacquisition or multiple losses of the thoracic limbs and pleons. Dev Genes Evol 221:133–140

    Article  PubMed  Google Scholar 

  • Janssen R, Prpic N-M, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Budd GE, Damen WGM, Prpic N-M (2008) Evidence for Wg-independent tergite border formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370

    Article  PubMed  CAS  Google Scholar 

  • Kabata Z (1979) Parasitic Copepoda of British fishes. Ray Society, London

    Google Scholar 

  • Kaestner A (1970) Invertebrate zoology: the Crustacea. Wiley, New York

    Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132

    Article  Google Scholar 

  • Koenemann S, Schram FR, Iliffe TM (2006) Trunk segmentation patterns in Remipedia. Crustaceana 79:607–631

    Article  Google Scholar 

  • Lankester ER (1902) Arthropoda. Encyclopaedia Britannica, 10th edn. Vol 25 pp 689–701

    Google Scholar 

  • Larsen K (2005) Deep-sea Tanaidacea (Peracarida) from the Gulf of Mexico (Crustacean Monographs 5). Brill, Leiden

    Google Scholar 

  • Lauterbach K-E (1975) Über die Herkunft der Malacostraca (Crustacea). Zool Anz 194:165–179

    Google Scholar 

  • Lawrence RF (1963) New Myriapoda from Southern Africa. Ann Natal Mus 15:297–318

    Google Scholar 

  • Lawrence PA (1992) The making of a fly. Blackwell, Oxford

    Google Scholar 

  • Leśniewska M, Bonato L, Minelli A, Fusco G (2009) Trunk anomalies in the centipede Stigmatogaster subterranea provide insight into late-embryonic segmentation. Arthropod Struct Dev 38:417–426

    Article  PubMed  Google Scholar 

  • Linder F (1952) Contributions to the morphology and taxonomy of the Branchiopoda Notostraca, with special reference to the North American species. Proc U S Nat Mus 102:1–69

    Article  Google Scholar 

  • Manton SM (1965) The evolution of arthropodan locomotory mechanisms. Part 8. Functional requirements and body design in Chilopoda, together with a comparative account of their skeleto-muscular system and Appendix on a comparison between burrowing forces of annelids and chilopods and it bearing upon the evolution of the arthropodan haemocoel. J Linn Soc (Zool) 46:251–483

    Google Scholar 

  • Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 6:481–491

    Article  Google Scholar 

  • Martin JW (1992) Branchiopoda. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Crustacea, vol 9. Wiley-Liss, New York, pp 25–224

    Google Scholar 

  • Matsuda R (1979) Morphologie du thorax et des appendices thoraciques des insectes. In: Grassé PP (ed) Traité de zoologie, vol 8(2). Masson, Paris, pp 1–289

    Google Scholar 

  • Mauriès J-P (1964) Sur quelques diplopodes de la Peninsule Iberique. Bull Soc Hist nat Toulouse 99:157–170

    Google Scholar 

  • McLaughlin PA (1980) Comparative morphology of recent Crustacea. Freeman, San Francisco

    Google Scholar 

  • Meinhardt H (1994) The algorithmic beauty of sea shells. Springer, Heidelberg

    Google Scholar 

  • Minelli A (1998) Molecules, developmental modules and phenotypes: a combinatorial approach to homology. Mol Phyl Evol 9:340–347

    Article  CAS  Google Scholar 

  • Minelli A (2003) The development of animal form: ontogeny, morphology and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Minelli A, Bortoletto S (1988) Myriapod metamerism and arthropod segmentation. Biol J Linn Soc 33:323–343

    Article  Google Scholar 

  • Minelli A, Fusco G (1995) Body segmentation and segment differentiation: the scope for heterochronic change. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, Chichester, pp 49–63

    Google Scholar 

  • Minelli A, Fusco G (2004) Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol Evol 19:423–429

    Article  PubMed  Google Scholar 

  • Minelli A, Fusco G (2005) Conserved versus innovative features in animal body organization. J Exptl Zool (Mol Dev Evol) 304B:520–525

    Article  Google Scholar 

  • Minelli A, Fusco G (in press) Homology. In: Kampourakis K (ed) The philosophy of biology—a companion for educators. Springer, Berlin

    Google Scholar 

  • Minelli A, Koch M (2011) Chilopoda—general morphology. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology. The Myriapoda, vol 1. Brill, Leiden, pp 43–66

    Google Scholar 

  • Minelli A, Maruzzo D, Fusco G (2010) Multi-scale relationships between numbers and size in the evolution of arthropod body features. Arthropod Struct Dev 39:468–477

    Article  PubMed  Google Scholar 

  • Newman WA, Knight MD (1984) The carapace and crustacean evolution—a rebuttal. J Crust Biol 4:682–687

    Article  Google Scholar 

  • Nguyen Duy–Jacquemin M, Uys C, Geoffroy J-J (2011) Two remarkable new species of Penicillata (Diplopoda, Polyxenida) from table Mountain National Park (Cape Town, South Africa). ZooKeys 156:85–103

    Article  Google Scholar 

  • Olesen J (2013) The crustacean carapace—morphology, function, development, and phylogenetic history. In: Watling L, Thiel M (eds) Functional morphology and diversity (Natural history of the Crustacea). Oxford University Press, Oxford, pp 103–139

    Google Scholar 

  • Olesen J, Haug JT, Maas A, Waloszek D (2011) External morphology of Lightiella monniotae (Crustacea, Cephalocarida) in the light of Cambrian ‘Orsten’ crustaceans. Arthropod Struct Dev 40:449–478

    Article  PubMed  Google Scholar 

  • Pereira LA, Minelli A, Barbieri F (1994) New and little known geophilomorph centipedes from Amazonian inundation forests near Manaus, Brasil (Chilopoda: Geophilomorpha). Amazoniana 13:163–204

    Google Scholar 

  • Raff RA, Kaufman TC (1983) Embryos, genes, and evolution. MacMillan, New York

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology, 7th edn. Thomson Brooks/Cole, Toronto

    Google Scholar 

  • Scheller U (2011) Pauropoda. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology. The Myriapoda, vol 1. Brill, Leiden, pp 467–508

    Google Scholar 

  • Scheller U, Adis J (2002) Symphyla. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft, Sofia, pp 547–554

    Google Scholar 

  • Schileyko AA (2006) Redescription of Scolopendropsis bahiensis (Brandt, 1841), the relations between Scolopendropsis and Rhoda, and notes on some characters used in scolopendromorph taxonomy (Chilopoda: Scolopendromorpha). Arthropoda Selecta 15:9–17

    Google Scholar 

  • Schram FR (1986) Crustacea. Oxford University Press, New York

    Google Scholar 

  • Schram FR, Koenemann S (2004) Developmental genetics and arthropod evolution: on body regions of Crustacea. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea (Crustacean Issues 15). Balkema, Lisse, pp 75–92

    Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265

    Article  Google Scholar 

  • Simaiakis SM (2009) Relationship between intraspecific variation in segment number and geographic distribution of Himantarium gabrielis (Linné, 1767) (Chilopoda: Geophilomorpha) in Southern Europe. Soil Org 81:359–371

    Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Szucsich N, Scheller U (2011) Symphyla. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology. The Myriapoda, vol 1. Brill, Leiden, pp 445–466

    Google Scholar 

  • Uliana M, Bonato L, Minelli A (2007) The Mecistocephalidae of the Japanese and Taiwanese islands (Chilopoda: Geophilomorpha). Zootaxa 1396:1–84

    Google Scholar 

  • van der Hammen L (1985) Comparative studies in Chelicerata III. Opilionida. Zool Verh Leiden 220:1–60

    Google Scholar 

  • van der Hammen L (1989) An introduction to comparative arachnology. SPB Publishing, The Hague

    Google Scholar 

  • Verhoeff KW (1926) Gliederfüßler: Arthropoda, II. Abteilung: Myriapoda. 2. Buch: Diplopoda. 3. Lieferung, in Bronn’s Klassen und Ordnungen des Tierreichs, 5 (2). Akademische Verlagsgesellschaft, Leipzig, pp 289–480

    Google Scholar 

  • Vilhelmsen L (2003) Phylogeny and classification of the Orussidae (Insecta: Hymenoptera), a basal parasitic wasp taxon. Zool J Linn Soc 139:337–418

    Article  Google Scholar 

  • Walossek D, Müller KJ (1997) Cambrian, ‘Orsten’-type arthropods and the phylogeny of Crustacea. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 139–153

    Google Scholar 

  • Watson, JAL, O’Farrell AF (1991) Odonata. In: CSIRO (ed) The insects of Australia, 2 edn. Melbourne University Press, Melbourne, pp 294–310

    Google Scholar 

  • Westheide W, Rieger R (2007) Spezielle Zoologie. Teil 1: Einzeller und Wirbellose Tiere. 2. Auflage. Elsevier—Spektrum Akademischer, München

    Google Scholar 

  • Yeates DK, David J, Merritt DJ, Baker CH (2002) The adult ventral nerve cord as a phylogenetic character in brachyceran Diptera. Org Divers Evol 2:89–96

    Article  Google Scholar 

Download references

Acknowledgments

Gerd Alberti, Geoff Boxshall, Diego Maruzzo, Marco Uliana and Lars Vilhelmsen kindly provided insightful comments on an early version of this chapter. Matteo Simonetti prepared the figure drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Fusco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fusco, G., Minelli, A. (2013). Arthropod Segmentation and Tagmosis. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_9

Download citation

Publish with us

Policies and ethics