Skip to main content

Architectural Principles and Evolution of the Arthropod Central Nervous System

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

This is an exciting time for arthropod neuroanatomists! A wealth of reviews, special issues, book chapters, and entire book volumes published during the last 10 years shows the unbroken interest in and enthusiasm for the arthropod nervous system and for gaining insights into its architecture, physiology, and aspects of neuroethology (Barth and Schmid 2001; Wiese 2001, 2002; Barth 2002; North and Greenspan 2007; Breithaupt and Thiel 2011, Galizia et al. 2012; Land and Nilsson 2012; Strausfeld 2012). Numerous review articles and book chapters witness that neurobiology is one of the most active fields of arthropod research. Recently, featured topics are, for example, the crustacean central nervous system (Schmidt and Mellon 2011; Harzsch et al. 2012; Sandeman et al. in press), structure and function of crustacean chemosensory sensilla (e.g. Hallberg and Skog 2011; Mellon and Reidenbach 2011), chelicerate strain detection systems (Barth 2012), and insect olfaction (Galizia and Szyska 2008; Hansson and Stensmyr 2011; Hansson et al. 2011; Sachse and Krieger 2011). Moreover, the central nervous system and visual organs of neglected taxa such as Myriapoda (Sombke et al. 2011a, 2012), Onychophora (Mayer 2006; Strausfeld et al. 2006a, b; Eriksson and Stollewerk 2010; Whitington and Mayer 2011), Trilobita (Clarkson et al. 2006), and Xiphosura (Battelle 2006) have been analyzed with contemporary techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Kaufman TC (2004) Hox genes and tagmatization of the higher Crustacea (Malacostraca). In: Scholtz G (ed) Evolutionary developmental biology of Crustacea (Crustacen issues 15). Balkema, Lisse, pp 41–74

    Google Scholar 

  • Arbas EA, Meinertzhagen IA, Shaw SR (1991) Evolution in nervous systems. Annu Rev Neurosci 14:9–38

    Article  PubMed  CAS  Google Scholar 

  • Arnold G, Masson C, Budharugsa S (1985) Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell Tiss Res 242:593–605

    Google Scholar 

  • Autrum H (1979) Comparative physiology and evolution of vision in invertebrates. A: Invertebrate photoreceptors. Springer, Berlin

    Google Scholar 

  • Barth FG (2001) Sinne und Verhalten—Aus dem Leben einer Spinne. Springer, Berlin

    Book  Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Berlin

    Book  Google Scholar 

  • Barth FG (2012) Spider strain detection. In: Barth FG, Humphrey JAC (eds) Frontiers in sensing. Springer, Wien, pp 251–273

    Chapter  Google Scholar 

  • Barth FG, Schmid A (2001) Ecology of sensing. Springer, Berlin

    Google Scholar 

  • Battelle B-A (2006) The eyes of Limulus polyphemus (Xiphosura, Chelicerata) and their afferent and efferent projections. Arthropod Struct Dev 35:261–274

    Article  PubMed  Google Scholar 

  • Bausenwein B, Müller NR, Heisenberg M (1994) Behavior-dependent activity labeling in the central complex of Drosophila during controlled visual stimulation. J Comp Neurol 340:255–268

    Article  PubMed  CAS  Google Scholar 

  • Belanger JH (2005) Contrasting tactics in motor control by vertebrates and arthropods. Integr Comp Biol 45:672–678

    Article  PubMed  Google Scholar 

  • Beltz BS, Kordas K, Lee MM, Long JB, Benton JL, Sandeman DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455:260–269

    Article  PubMed  Google Scholar 

  • Berg BG, Galizia CG, Brandt R, Mustaparta H (2002) Digital atlases of the antennal lobe in two species of tobacco budworm moths, the oriental Helicoverpa assulta (male) and the American Heliothis virescens (male and female). J Comp Neurol 446:123–134

    Article  PubMed  Google Scholar 

  • Bianchet MA, Bains G, Pelosi P, Pevsner J, Snyder SH, Monaco HL, Amzel LM (1996) The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition. Nature Struct Mol Biol 3:934–939

    Article  CAS  Google Scholar 

  • Bitsch C, Bitsch J (2005) Evolution of eye structure and arthropod phylogeny. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships. Taylor & Francis, New York, pp 81–111

    Google Scholar 

  • Bitsch J, Bitsch C (2007) The segmental organization of the head region in Chelicerata: a critical review of recent studies and hypotheses. Acta Zool 88:317–335

    Article  Google Scholar 

  • Bitsch J, Bitsch C (2010) The tritocerebrum and the clypeolabrum in mandibulate arthropods: segmental interpretations. Acta Zool 91:249–266

    Article  Google Scholar 

  • Blaustein DN, Derby CD, Simmons RB, Beall AC (1988) Structure of the brain and medulla terminals of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii with an emphasis on olfactory centers. J Crustac Biol 8:493–519

    Article  Google Scholar 

  • Boeckh J, Tolbert LP (1993) Synaptic organization and development of the antennal lobe in insects. Microsc Res Tech 24:260–280

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Euler T (2011) Seeing things in motion: models circuits, and mechanisms. Neuron 71:974–994

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70

    Article  PubMed  CAS  Google Scholar 

  • Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179:41–64

    Article  PubMed  CAS  Google Scholar 

  • Böttger O (1910) Das Gehirn eines niederen Insektes (Lepisma saccharina L.). Jenaer Ztschr Naturwiss 46:801–844

    Google Scholar 

  • Bräuning P, Pflüger H-J, Hustert R (1983) The specificity of central nervous projections of locust mechanoreceptors. J Comp Neurol 218:197–207

    Article  Google Scholar 

  • Breidbach O, Kutsch W (1995) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Breithaupt T, Thiel M (2011) Chemical communication in crustaceans. Springer, New York

    Book  Google Scholar 

  • Brownell PH (1989) Glomerular cytoarchitectures in chemosensory systems of Archnids. Ann N Y Acad Sci 855:502–507

    Article  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates, vol II. Freeman, San Francisco

    Google Scholar 

  • Burdohan JA, Comer CM (1996) Cellular organization of an antennal mechanosensory pathway in the cockroach Periplaneta americana. J Neurosci 16:5830–5843

    PubMed  CAS  Google Scholar 

  • Burrows M (1996) Neurobiology of an insect brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Burrows M, Newland PL (1993) Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J Comp Neurol 329:412–426

    Article  PubMed  CAS  Google Scholar 

  • Callaway JC, Stuart AE (1999) The distribution of histamine and serotonin in the barnacle’s nervous system. Microsc Res Tech 44:94–104

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SC, Wyse GA (1986) An atlas of the brain of the horseshoe crab Limulus polyphemus. J Morphol 187:363–386

    Article  PubMed  CAS  Google Scholar 

  • Chambille I, Rospars JP (1981) Le deutocerebron de la blatte Blaberus craniifer Burm. (Dictyoptera: Blaberidae). Étude qualitative et identification visuelle des glomerules. Int J Insect Morphol Embryol 10:141–165

    Article  Google Scholar 

  • Clarkson ENK, Levi-Setti R, Horváth G (2006) The eyes of trilobites; the oldest preserved visual system. Arthropod Struct Dev 35:247–259

    Article  PubMed  Google Scholar 

  • Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6(8):e1001064. doi:10.1371/journal.pgen.1001064

    Article  PubMed  CAS  Google Scholar 

  • Damen WGM, Hausdorf M, Seyfarth E-A, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670

    Article  PubMed  CAS  Google Scholar 

  • Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288

    Article  PubMed  CAS  Google Scholar 

  • Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. J Comp Neurol 518:2612–2632

    PubMed  Google Scholar 

  • Dohle W (2001) Are the insects terrestrial crustaceans? a discussion of some new facts and arguments and the proposal of the proper name ‘Tetraconata’ for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entom France (NS) 37:85–103

    Google Scholar 

  • Douglas JK, Strausfeld NJ (2003) Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc Res Tech 62:132–150

    Article  Google Scholar 

  • Dreyer D, Vitt H, Dippel S, Goetz B, el Jundi B, Kollmann M, Huetteroth W, Schachtner J (2010) 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Syst Neurosci 4:3. doi:10.3389/neuro.06.003.2010

    PubMed  Google Scholar 

  • Duman-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126:2327–2334

    PubMed  CAS  Google Scholar 

  • Egelhaaf M (2006) The neural computation of visual motion information. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 399–462

    Google Scholar 

  • Egelhaaf M, Kern R, Lindemann J, Braun E, Geurten B (2009) Active vision in blowflies: strategies and mechanisms of spatial orientation. In: Floreano D, Zufferey J-C, Srinivasan MV, Ellington C (eds) Flying insects and robots. Springer, Heidelberg, pp 51–61

    Chapter  Google Scholar 

  • Eguchi E, Tominaga Y (1999) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, Berlin

    Google Scholar 

  • Eisthen HL (2002) Why are olfactory systems of different animals so similar? Brain Behav Evol 59:273–293

    Article  PubMed  Google Scholar 

  • Elofsson R, Dahl E (1970) The optic neuropils and chiasmata of Crustacea. Z Zellforsch mikrosk Anat 107:343–360

    Article  PubMed  CAS  Google Scholar 

  • Elofsson R, Hagberg M (1986) Evolutionary aspects on the construction of the first optic neuropil (lamina) in Crustacea. Zoomorphol 106:174–178

    Article  Google Scholar 

  • Elson RC (1996) Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-leg nerves and possible homologies with insects. J Comp Neurol 365:1–17

    Article  PubMed  CAS  Google Scholar 

  • Eriksson BJ, Stollewerk A (2010) The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. Arthropod Struct Dev 39:478–490

    Article  PubMed  CAS  Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insekten. Deuticke, Leipzig

    Book  Google Scholar 

  • Exner S, Hardie RC (1989) The physiology of the compound eyes in insects and crustaceans. Springer, Berlin

    Book  Google Scholar 

  • Fahrenbach WH (1977) The brain of the horseshoe crab (Limulus polyphemus) II. Architecture of the corpora pedunculata. Tissue Cell 9:157–166

    Article  PubMed  CAS  Google Scholar 

  • Fahrenbach WH (1979) The brain of the horseshoe crab (Limulus polyphemus) III. Cellular and synaptic organization of the corpora pedunculata. Tissue Cell 11:163–200

    Article  PubMed  CAS  Google Scholar 

  • Fahrenbach WH, Chamberlain SC (1987) The brain of the horseshoe crab, Limulus polyphemus. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 63–93

    Google Scholar 

  • Fanenbruck M, Harzsch S (2005) A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod Struct Dev 34:343–378

    Article  Google Scholar 

  • Farris SM, Sinakevitch I (2003) Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct Dev 32:79–101

    Article  PubMed  Google Scholar 

  • Farris SM (2005) Evolution of insect mushroom bodies: old clues, new insights. Arthropod Struct Dev 34:211–234

    Article  Google Scholar 

  • Farris SM (2008) Tritocerebral tract input to the insect mushroom bodies. Arthropod Struct Dev 37:492–503

    Article  PubMed  Google Scholar 

  • Farris SM (2011) Are mushroom bodies cerebellum-like structures? Arthropod Struct Dev 40:368–379

    Article  PubMed  Google Scholar 

  • Farris SM, Roberts NS (2005) Coevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects. Proc Natl Acad Sci U S A 102:17394–17399

    Google Scholar 

  • Fonta C, Sun X-J, Masson C (1993) Morphology and spatial distribution of bee antennal lobe interneurons responsive to odours. Chemi Senses 18:101–119

    Article  Google Scholar 

  • Franceschini N, Riehle A, Le Nestour A (1989) Directional selective motion detection by insect neurons. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 360–390

    Chapter  Google Scholar 

  • Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: Insights from standardized numbering of homologous photoreceptors. J Exptl Zool 316:484–499

    CAS  Google Scholar 

  • Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 271:1457–1481

    Article  PubMed  Google Scholar 

  • Galizia CG, Eisenhardt D, Giurfa M (2012) Honeybee neurobiology and behavior: a tribute to Randolf Menzel. Springer, New York

    Book  Google Scholar 

  • Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honey-bee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 395:383–394

    Article  Google Scholar 

  • Galizia CG, Menzel R (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr Opin Neurobiol 10:504–510

    Article  PubMed  CAS  Google Scholar 

  • Galizia CG, Menzel R (2001) The role of glomeruli in the neural representation of odours: results from optical recording studies. J Insect Physiol 47:115–129

    Article  PubMed  CAS  Google Scholar 

  • Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55:399–420

    Article  PubMed  CAS  Google Scholar 

  • Galizia CG, Szyska P (2008) Olfactory coding in the insect brain: molecular receptive ranges, spatial and temporal coding. Entom Exp Appl 128:81–92

    Article  Google Scholar 

  • Ghaffar H, Larsen JR, Booth GM, Perkes R (1984) General morphology of the brain of the blind cave beetle, Neaphaenops tellkampfii Erichson (Coleoptera: Carabidae). Int J Insect Morphol Embryol 13:357–371

    Article  Google Scholar 

  • Ghaninia M, Hansson BS, Ignell R (2007) The antennal lobe of the African malaria mosquito, Anopheles gambiae—innervations and three dimensional reconstruction. Arthropod Struct Dev 36:23–39

    Article  PubMed  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  PubMed  CAS  Google Scholar 

  • Glantz RM, Miller CS (2002) Signal processing in the crayfish optic lobe: contrast, motion and polarization vision. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 486–498

    Google Scholar 

  • Glantz RM, Miller CS, Nässel DR (2000) Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors. J Neurosci 20:1780–1790

    PubMed  CAS  Google Scholar 

  • Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 436:474–489

    Article  Google Scholar 

  • Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus: comparison with compound eyes of insects and other crustaceans. Cell Tissue Res 305:147–158

    Article  PubMed  CAS  Google Scholar 

  • Hallberg E, Skog M (2011) Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 103–121

    Google Scholar 

  • Hansson BS, Harzsch S, Knaden M, Stensmyr MC (2011) The neural and behavioral basis of chemical communication in terrestrial crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 149–173

    Google Scholar 

  • Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711

    Article  PubMed  CAS  Google Scholar 

  • Hanström B (1926) Das Nervensystem und die Sinnesorgane von Limulus polyphemus. Lunds Univ Årsskr NF 22:1–79

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin

    Google Scholar 

  • Hardie RC (1989) Neurotransmitters in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 235–256

    Chapter  Google Scholar 

  • Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S (2002) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

    Article  PubMed  Google Scholar 

  • Harzsch S (2003) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea and Hexapoda? Arthropod Struct Dev 32:17–38

    Article  PubMed  Google Scholar 

  • Harzsch S (2004a) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S (2004b) The tritocerebrum of Euarthropoda: a “non-drosophilocentric” perspective. Evol Dev 6:303–309

    Article  PubMed  Google Scholar 

  • Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46:162–194

    Article  PubMed  Google Scholar 

  • Harzsch S (2007) Architecture of the nervous system as a character for phylogenetic reconstructions: examples from the Arthropoda. Species Phylog Evol 1:33–57

    Google Scholar 

  • Harzsch S, Benton J, Darwirs RR, Beltz B (1999) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis and apoptotic cell death. J Neurobiol 39:294–306

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Glötzner J (2002) An immunhistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struct Dev 30:251–270

    Article  PubMed  Google Scholar 

  • Harzsch S, Hafner G (2006) Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Struct Dev 35:319–340

    Article  PubMed  Google Scholar 

  • Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae): neuroanatomical evidence for a superb aerial sense of smell. BMC Neurosci 9:1–35

    Article  CAS  Google Scholar 

  • Harzsch S, Melzer RR, Müller CHG (2007) Mechanisms of eye development and evolution of the arthropod visual systems: the lateral eyes of myriapoda are not modified insect ommatidia. Org Divers Evol 7:20–32

    Article  Google Scholar 

  • Harzsch S, Müller CHG, Wolf H (2005a) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Gen Evol 215:53–68

    Article  Google Scholar 

  • Harzsch S, Rieger V, Krieger J, Seefluth F, Strausfeld NJ, Hansson BS (2011) Transition from marine to terrestrial ecologies: changes in olfactory and tritocerebral neuropils in land-living isopods. Arthropod Struct Dev 40:244–257

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Sandeman D, Chaigneau J (2012) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology—anatomy, taxonomy, biology. The Crustacea, vol. 3. Brill, Leiden, pp 9–236

    Google Scholar 

  • Harzsch S, Waloszek D (2000) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Waloszek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Wildt M, Battelle B, Waloszek D (2005b) Immunohistochemical localization of neurotransmitters in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda. Arthropod Struct Dev 34:327–342

    Article  CAS  Google Scholar 

  • Heinze S, Homberg U (2007) Map-like representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nature Rev Neurosci 4:266–275

    Article  CAS  Google Scholar 

  • Heuer CM, Kollmann M, Binzer M, Schachtner J (2012) Neuropeptides in insect mushroom bodies. Arthropod Struct Dev 41:199–226

    Article  PubMed  Google Scholar 

  • Heuer CM, Loesel R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331:713–724

    Article  PubMed  CAS  Google Scholar 

  • Heuer CM, Loesel R (2009) Three-dimensional reconstruction of mushroom body neuropils in the polychaete species Nereis diversicolor and Harmothoe areolata (Phyllodocida, Annelida). Zoomorphol 128:219–226

    Article  Google Scholar 

  • Heuer CM, Müller CHG, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13. doi:10.1186/1742-9994-7-13

    Article  PubMed  Google Scholar 

  • Hoese B (1989) Morphological and comparative studies on the second antennae of terrestrial isopods. Monitore Zoologico Italiano (N.S.) Monografia 4:127–152

    Google Scholar 

  • Holmgren N (1916) Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. Kongl Svensk Vetenskap Akad Handl 56:1–303

    Google Scholar 

  • Homberg U (1985) Interneurons in the central complex in the bee brain (Apis mellifera, L.). J Insect Physiol 31:251–264

    Article  Google Scholar 

  • Homberg U (1994) Distribution of neurotransmitters in the insect brain. Fischer, Stuttgart

    Google Scholar 

  • Homberg U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37:347–362

    Article  PubMed  Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Vitzthum H, Müller M, Binkle U (1999) Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria: identification of immunoreactive neurons and colocalization with neuropeptides. J Comp Neurol 409:495–507

    Article  PubMed  CAS  Google Scholar 

  • Horridge GA (1975) The compound eye and vision of insects. Clarendon Press, Oxford

    Google Scholar 

  • Huetteroth W, Schachter J (2005) Standard three-dimensional glomeruli of the Manduca sexta antennal lobe: a tool to study both developmental and adult neuronal plasticity. Cell Tissue Res 319:513–524

    Article  PubMed  Google Scholar 

  • Ignell R, Dekker T, Ghaninia M, Hansson BS (2005) Neuronal architecture of the mosquito deutocerebrum. J Comp Neurol 493:207–240

    Article  PubMed  Google Scholar 

  • Ignell R, Hansson BS (2005) Projection patterns of gustatory neurons in the suboesophageal ganglion and tritocerebrum of mosquitoes. J Comp Neurol 492:214–233

    Article  PubMed  Google Scholar 

  • Johansson KUI, Hallberg E (1992) The organization of the olfactory lobes in Euphausiacea and Mysidacea (Crustacea, Malacostraca). Zoomorphol 112:81–90

    Article  Google Scholar 

  • Kämper G, Murphey RK (1987) Synapse formation by sensory neurons after cross-species transplantation in crickets: the role of positional information. Dev Biol 122:492–502

    Article  PubMed  Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure, vol 1. Plenum, New York, pp 402–433

    Google Scholar 

  • Keil TA (2012) Sensory cilia in arthropods. ASD 41:515–534

    Google Scholar 

  • Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rössler W (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499:933–952

    Article  PubMed  Google Scholar 

  • Kloppenburg P (1995) Anatomy of the antennal motor neurons in the brain of the honeybee (Apis mellifera). J Comp Neurol 363:333–343

    Article  PubMed  CAS  Google Scholar 

  • Koenemann S, Hoenemann M, Stemme T, Jenner RA, v Reumont BM (2010) Arthropod phylogeny revisited, with a focus on crustacean relationships. Arthropod Struct Dev 39:88–110

    Article  PubMed  Google Scholar 

  • Kollmann M, Huetteroth W, Schachtner J (2011) Brain organization in Collembola (springtails). Arthropod Struct Dev 40:304–316

    Article  PubMed  Google Scholar 

  • Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S (2010) Brain architecture of the largest living land arthropod, the giant robber crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool 7:25. doi:10.1186/1742-9994-7-25

    Article  PubMed  Google Scholar 

  • Krieger J, Sombke A, Seefluth F, Kenning M, Hansson BS, Harzsch S (2012) Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura). Cell Tissue Res 348:47–69

    Article  PubMed  Google Scholar 

  • Kutsch W, Breidbach O (1994) Homologous structures in the nervous system of Arthropoda. Adv Insect Physiol 24:1–113

    Article  Google Scholar 

  • Kutsch W, Heckmann R (1995a) Motor supply of the dorsal longitudinal muscles I: homonomy and ontogeny of the motoneurones in locusts (Insecta, Caelifera). Zoomorphol 115:179–195

    Article  Google Scholar 

  • Kutsch W, Heckmann R (1995b) Motor supply of the dorsal longitudinal muscles II: comparison of motoneurone sets in Tracheata. Zoomorphol 115:197–211

    Article  Google Scholar 

  • Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405:543–552

    Article  PubMed  CAS  Google Scholar 

  • Land MF, Nilsson D-E (2012) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Langworthy K, Helluy S, Benton J, Beltz B (1997) Amines and peptides in the brain of the American lobster: immunocytochemical localization patterns and implications for brain function. Cell Tissue Res 288:191–206

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Naraghi M (1994) Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci 14:2993–3004

    PubMed  CAS  Google Scholar 

  • Leise EM, Hall W, Mulloney B (1986) Functional organization of crayfish abdominal ganglia: I. The flexor systems. J Comp Neurol 253:25–45

    Article  PubMed  CAS  Google Scholar 

  • Leise EM, Hall WM, Mulloney B (1987) Functional organization of crayfish abdominal ganglia. II: sensory afferents and extensor motor neurons. J Comp Neurol 266:495–518

    Article  PubMed  CAS  Google Scholar 

  • Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94:465–477

    Article  PubMed  CAS  Google Scholar 

  • Linne V, Eriksson BJ, Stollewerk A (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364:66–76

    Article  PubMed  CAS  Google Scholar 

  • Loesel R (2004) Comparative morphology of central neuropils in the brain of arthropods and its evolutionary and functional implications. Acta Biol Hung 55:39–51

    Article  PubMed  CAS  Google Scholar 

  • Loesel R (2006) Can brain structures help to resolve interordinal relationships in insects? Arthropod Syst Phylog 64:101–106

    Google Scholar 

  • Loesel R (2011) Neurophylogeny—retracing early metazoan brain evolution. In: Pontarotti P (ed) Evolutionary biology: concepts, biodiversity, macroevolution, and genome evolution. Springer, Heidelberg, pp 169–191

    Chapter  Google Scholar 

  • Loesel R, Heuer CM (2010) The mushroom bodies—prominent brain centers of arthropods and annelids with enigmatic evolutionary origin. Acta Zool 91:29–34

    Article  Google Scholar 

  • Loesel R, Homberg U (1999) Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Res 842:408–418

    Article  PubMed  CAS  Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    Article  PubMed  Google Scholar 

  • Loesel R, Seyfarth EA, Bräunig P, Agricola HJ (2011) Neuroarchitecture of the arcuate body in the brain of the spider Cupiennius salei (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry. Arthropod Struct Dev 40:210–220

    Article  PubMed  CAS  Google Scholar 

  • Masse NY, Turner GC, Jefferis GS (2009) Olfactory information processing in Drosophila. Curr Biol 19:R700–R713

    Article  PubMed  CAS  Google Scholar 

  • Mayer G (2006) Structure and development of onychophoran eyes—what is the ancestral visual organ in arthropods? Arthropod Struct Dev 35:231–245

    Article  PubMed  Google Scholar 

  • Mayer G, Koch M (2005) Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthropod Struct Dev 34:471–480

    Article  Google Scholar 

  • Mayer G, Whitington PM, Sunnucks P, Pflüger H-J (2010) A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol 10:255. doi:10.1186/1471-2148-10-255

    Article  PubMed  Google Scholar 

  • Meinertzhagen IA (1991) Evolution of the cellular organization of the arthropod compound eye and optic lobe. In: Cronly-Dillon JR, Gregory RL (eds) Vision and visual dysfunction, vol 2., Evolution of the eye and visual systemMacmillan, London, pp 341–363

    Google Scholar 

  • Mellon Jr DeF (2007) Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. Biol Bull 213:1–11

    Article  Google Scholar 

  • DeF Mellon Jr, Reidenbach MA (2011) Fluid mechanical problems in crustacean active chemoreception. In: Barth F, Humphrey JAC, Srinivasan M (eds) Frontiers in sensing. Springer, New York, pp 159–170

    Google Scholar 

  • Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwiss 84:542–544

    Article  CAS  Google Scholar 

  • Melzer R, Michalke C, Smola U (2000) Walking on insect paths: early ommatidial development in the compound eye of the ancestral crustacean Triops cancriformis. Naturwiss 87:308–311

    Article  PubMed  CAS  Google Scholar 

  • Melzer RR, Petyko Z, Smola U (1996) Photoreceptor axons and optic neuropils in Lithobius forficatus (Linnaeus, 1758) (Chilopoda, Lithobiidae). Zool Anz 235:177–182

    Google Scholar 

  • Milde JJ (1988) Visual responses of interneurons in the posterior median protocerebrum and the central complex of the honeybee Apis mellifera. J Insect Physiol 34:427–436

    Article  Google Scholar 

  • Mißbach C, Harzsch S, Hansson B (2011) New insights into an ancient insect nose: the olfactory pathway of Lepismachilis y-signata (Archaeognatha: Machilidae). Arthropod Struct Dev 40:317–333

    Article  PubMed  Google Scholar 

  • Mittmann B, Scholtz G (2003) Development of the nervous system in the ‘head’ of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

    PubMed  Google Scholar 

  • Müller CHG, Rosenberg J, Richter S, Meyer-Rochow VB (2003) The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the mandibulata concept. Zoomorphol 122:191–209

    Article  Google Scholar 

  • Nässel DR (1976) The retina and retinal projection on the lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana). J Comp Neurol 167:341–360

    Article  Google Scholar 

  • Nässel DR (1977) Types and arrangement of neurons in the crayfish optic lamina. Cell Tissue Res 179:45–75

    PubMed  Google Scholar 

  • Nässel DR, Elofsson R, Odselius R (1978) Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphnia magna (Crustacea: Branchiopoda). Cell Tissue Res 190:435–457

    Article  PubMed  Google Scholar 

  • Nässel DR, Geiger G (1983) Neuronal organization in fly optic lobes altered by laser ablations early in development or by mutations of the eye. J Comp Neurol 217:86–102

    Article  PubMed  Google Scholar 

  • Nässel DR, Waterman TH (1977) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol A 131:205–216

    Article  Google Scholar 

  • Newland PL, Rogers SM, Gaaboub I, Matheson T (2000) Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect. J Comp Neurol 425:82–96

    Article  PubMed  CAS  Google Scholar 

  • Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 30–73

    Chapter  Google Scholar 

  • Nilsson D-E, Kelber A (2007) A functional analysis of compound eye evolution. Arthropod Struct Dev 36:373–385

    Article  PubMed  Google Scholar 

  • Nilsson D-E, Osorio D (1997) Homology and parallelism in arthropod sensory processing. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 333–347

    Google Scholar 

  • Nishino H, Nishikawa M, Yokohari F, Mizunami M (2005) Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain. J Comp Neurol 493:291–308

    Article  PubMed  Google Scholar 

  • North G, Greenspan RJ (2007) Invertebrate neurobiology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Oldfield BP (1988) Tonotopic organization of the insect auditory pathway. Trends Neurosci 11:267–270

    Article  PubMed  CAS  Google Scholar 

  • Osorio D (2007) Spam and the evolution of the fly’s eye. BioEssays 29:111–115

    Article  PubMed  Google Scholar 

  • Pareto A (1972) Die zentrale Verteilung der Fühlerafferenz bei Arbeiterinnen der Honigbiene, Apis mellifera, L. Ztschr Zellforsch mikr Anat 131:109–140

    Article  CAS  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989b) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  • Paulus HF (2000) Phylogeny of the Myriapoda—Crustacea—Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208

    Article  Google Scholar 

  • Pflüger HJ, Stevenson P (2005) Evolutionary aspects of octopaminergic systems with emphasis on arthropods. Arthropod Struct Dev 34:379–396

    Article  CAS  Google Scholar 

  • Rathmayer W (1990) Inhibition through neurons of the common inhibitory type (CI-neurons) in crab muscles. In: Wiese K (ed) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 271–278

    Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc B 272:395–401

    Article  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Reichert H (1988) Control of sequences of movements in crayfish escape behavior. Experientia 44:395–401

    Article  Google Scholar 

  • Richter S (2002) The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237

    Article  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Doring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Moeller OS, Müller CHG, Rieger V, Rothe BG, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29. doi:10.1186/1742-9994-7-29

    Article  PubMed  Google Scholar 

  • Roberston RM, Pearson KG, Reichert H (1982) Flight interneurons in the locust and the origin of insect wings. Science 217:177–179

    Article  Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of orthoptera. J Comp Neurol 275:201–215

    Article  PubMed  Google Scholar 

  • Rospars JP (1983) Invariance and sex-specific variations of the glomerular organization in the antennal lobes of a moth, Mamestra brassicae and a butterfly, Pieris brassicae. J Comp Neurol 220:80–96

    Article  PubMed  CAS  Google Scholar 

  • Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17:243–294

    Article  Google Scholar 

  • Rospars JP, Hildebrand JG (1992) Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta. Cell Tissue Res 270:205–227

    Article  PubMed  CAS  Google Scholar 

  • Rospars JP, Hildebrand JG (2000) Sexually dimorphic and isomorphic glomeruli in the antennal lobes of the sphinx moth Manduca sexta. Chem Senses 25:119–129

    Article  PubMed  CAS  Google Scholar 

  • Rössler W, Zube C (2011) Dual olfactory pathway in Hymenoptera: evolutionary insights from comparative studies. Arthropod Struct Dev 40:349–357

    Article  PubMed  Google Scholar 

  • Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: Phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B 278:298–306

    Article  PubMed  CAS  Google Scholar 

  • Sachse S, Krieger J (2011) Olfaction in insects—the primary processes of odor recognition and coding. E-Neuroforum 2:49–60

    Article  Google Scholar 

  • Sandeman D, Kenning M, Harzsch S (in press) Adaptive trends in malacostracan brain form and function related to behaviour. In: Derby C, Thiel M (eds) Crustacean nervous system and their control of behaviour. The natural history of the Crustacea, vol. 3

    Google Scholar 

  • Sandeman DC, Luff SE (1973) The structural organization of glomerular neuropile in the olfactory and accessory lobes of an australian freshwater crayfish, Cherax destructor. Ztschr Zellforsch mikr Anat 142:37–61

    Article  CAS  Google Scholar 

  • Sandeman DC, Beltz BS, Sandeman RE (1995) Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. J Comp Neurol 352:263–279

    Article  PubMed  CAS  Google Scholar 

  • Sandeman D, DeF Mellon Jr (2002) Olfactory centers in the brain of freshwater crayfish. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 386–404

    Google Scholar 

  • Sandeman DC, Sandeman RE (1994) Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes. J Comp Neurol 341:130–144

    Article  PubMed  CAS  Google Scholar 

  • Sandeman DC, Sandeman RE, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman DC, Scholtz G (1995) Ground plans, evolutionary changes and homologies in decapod crustacean brains. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 329–347

    Chapter  Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod crustacea. J Exptl Zool 265:112–133

    Article  Google Scholar 

  • Sandeman DC, Varju D (1988) A behavioral study of tactile localization in the crayfish Cherax destructor. J Comp Physiol A 163:525–536

    Article  Google Scholar 

  • Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36

    Article  PubMed  CAS  Google Scholar 

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 35:257–299

    Article  Google Scholar 

  • Schmalfuss H (1998) Evolutionary strategies of the antennae in terrestrial isopods. J Crustac Biol 18:10–24

    Article  Google Scholar 

  • Schmidt H, Rickert C, Bossing T, Vef O, Urban J, Technau GM (1997) The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 189:186–204

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Ache BW (1992) Antennular projections to the midbrain of the spiny lobster. II. Sensory innervation of the olfactory lobe. J Comp Neurol 318:291–303

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Ache BW (1993) Antennular projections to the midbrain of the spiny lobster. III. Central arborizations of motoneurons. J Comp Neurol 336:583–594

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Ache BW (1996a) Processing of antennular input in the brain of the spiny lobster, Panulirus argus. II. The olfactory pathway. J Comp Physiol A 178:605–628

    Article  Google Scholar 

  • Schmidt M, Ache BW (1996b) Processing of antennular input in the brain of the spiny lobster, Panulirus argus. I. Non-olfactory chemosensory and mechanosensory pathway of the lateral and median antennular neuropils. J Comp Physiol A 178:579–604

    Article  Google Scholar 

  • Schmidt M, Ache BW (1997) Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res 287:541–563

    Article  PubMed  Google Scholar 

  • Schmidt M, DeF Mellon Jr (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 123–147

    Google Scholar 

  • Schmidt M, van Ekeris L, Ache BW (1992) Antennular projections to the midbrain of the spiny lobster. I. Sensory innervation of the lateral and medial antennular neuropils. J Comp Neurol 318:277–290

    Article  PubMed  CAS  Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415

    Article  PubMed  Google Scholar 

  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

    Article  PubMed  CAS  Google Scholar 

  • Skinner K (1985a) The structure of the fourth abdominal ganglion of the crayfish, Procambarus clarki (Girad). I. Tracts in the ganglionic core. J Comp Neurol 234:168–181

    Article  PubMed  CAS  Google Scholar 

  • Skinner K (1985b) The structure of the fourth abdominal ganglion of the crayfish, Procambarus clarki (Girad). II. Synaptic neuropils. J Comp Neurol 234:182–191

    Article  PubMed  CAS  Google Scholar 

  • Sombke A, Harzsch S, Hansson BS (2011a) Organization of deutocerebral neuropils and olfactory behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 36:43–61

    Article  PubMed  Google Scholar 

  • Sombke A, Lipke E, Kenning M, Müller CHG, Hansson BS, Harzsch S (2012) Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 13:1. doi:10.1186/1471-2202-13-1

    Article  PubMed  Google Scholar 

  • Sombke A, Rosenberg J, Hilken G (2011b) Chilopoda—the nervous system. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology—the Myriapoda, vol I. Brill, Leiden, pp 217–234

    Chapter  Google Scholar 

  • Sombke A, Rosenberg J, Hilken G, Westermann M, Ernst A (2011c) The source of chilopod sensory information: external structure and distribution of antennal sensilla in Scutigera coleoptrata (Chilopoda, Scutigeromorpha). J Morphol 272:1376–1387

    Article  PubMed  Google Scholar 

  • Spreitzer A, Melzer RR (2003) The nymphal eyes of Parabuthus transvaalicus Purcell, 1899 (Buthidae): an accessory lateral eye in a scorpion. Zool Anz 242:137–143

    Article  Google Scholar 

  • Staudacher E (1998) Distribution and morphology of descending brain neurons in the cricket. Cell Tissue Res 294:187–202

    Article  PubMed  Google Scholar 

  • Staudacher E, Schildberger K (1999) A newly described neuropile in the deutocerebrum of the cricket: antennal afferents and descending interneurons. Zoology 102:212–226

    Google Scholar 

  • Stavenga DG, Hardie RC (1989) Facets of vision. Springer, Berlin

    Book  Google Scholar 

  • Stavenga DG, Melzer RR, Harzsch S (eds) (2006, 2007) Origin and evolution of arthropod visual systems. Arthropod Struct Dev 35(4) (2006), 36(4) (2007)

    Google Scholar 

  • Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 40:221–243

    Article  PubMed  Google Scholar 

  • Stollewerk A (2008) Evolution of neurogenesis in arthropods. In: Minelli A, Fusco G (eds) Evolving pathways. Cambridge University Press, Cambridge, pp 359–380

    Chapter  Google Scholar 

  • Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206

    Article  PubMed  Google Scholar 

  • Stollewerk A, Simpson P (2005) Evolution of early development of the nervous system: a comparison between arthropods. BioEssays 27:874–883

    Article  PubMed  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin

    Book  Google Scholar 

  • Strausfeld NJ (1989) Beneath the compound eye: neuroanatomical analysis and physiological correlates in the study of insect vision. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 317–359

    Chapter  Google Scholar 

  • Strausfeld NJ (1998) Crustacean–insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol 52:186–206

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1999) A brain region in insects that supervises walking. Progr Brain Res 123:273–284

    Article  CAS  Google Scholar 

  • Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Article  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc B 276:1929–1937

    Article  PubMed  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains. Evolution, functional elegance, and historical significance. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Strausfeld NJ, Andrews DR (2011) A new view of insect–crustacean relationships I. Inferences from neural cladistics and comparative neuroanatomy. Arthropod Struct Dev 40:276–288

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider—Cupiennius salei. J Comp Neurol 328:43–62

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Buschbeck E, Gomez RS (1995) The arthropod mushroom body: its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates—an evolutionary and comparative approach. Birkhäuser, Basel, pp 349–381

    Chapter  Google Scholar 

  • Strausfeld NJ, Douglas J, Campbell H, Higgins C (2006a) Parallel processing in the optic lobes of flies and the occurence of motion computing circuits. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 349–399

    Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretation of arthropod mushroom bodies. Learn Mem 5:11–37

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–939

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Invertebrate visual center and behaviors I. Springer, Berlin, pp 1–132

    Google Scholar 

  • Strausfeld NJ, Reisenman CE (2009) Dimorphic olfactory lobes in the Arthropoda. Ann NY Acad Sci 1170:487–496

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S (2006b) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem linage. Proc R Soc B 273:1857–1866

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Strausfeld CM, Stowe S, Rowell D, Loesel R (2006c) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Struct Dev 35:169–196

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75

    Article  PubMed  CAS  Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opini Neurobiol 12:633–638

    Article  CAS  Google Scholar 

  • Strauss R (2003) Control of Drosophila walking and orientation behavior by functional subunits localized in different neuropils in the central brain. In: Elsner N, Zimmermann H (eds) Proceedings of the 29th Göttingen neurobiology conference. Thieme, Stuttgart, p 206

    Google Scholar 

  • Strauss R, Hanesch U, Kinkelin M, Wolf R, Heisenberg M (1992) No-bridge of Drosophila melanogaster—portrait of a structural mutant of the central complex. J Neurogenet 8:125–155

    Article  PubMed  CAS  Google Scholar 

  • Strauss R, Heisenberg M (1990) Coordination of legs during straight walk and turning in Drosophila melanogaster. J Comp Physiol A 167:403–412

    Article  PubMed  CAS  Google Scholar 

  • Strauss R, Heisenberg M (1993) Higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861

    PubMed  CAS  Google Scholar 

  • Strotmann J (2001) Targeting of olfactory neurons. Cell Mol Life Sci 58:531–537

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2005) Integration and segregation of inputs to higher-order neuropils of the crayfish brain. J Comp Neurol 481:118–126

    Article  PubMed  Google Scholar 

  • Sun X-J, Fonta C, Masson C (1993) Odour quality processing by bee antennal lobe interneurons. Chem Senses 18:355–377

    Article  CAS  Google Scholar 

  • Szlendak E, Oliver JH (1992) Anatomy of synganglia, including their neurosecretory regions, in unfed, virgin female Ixodes scapularis Say (Acari: Ixodidae). J Morphol 213:349–364

    Article  PubMed  CAS  Google Scholar 

  • Sztarker J, Strausfeld NJ, Tomsic D (2005) Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol 493:396–411

    Article  PubMed  Google Scholar 

  • Tautz J, Müller-Tautz R (1983) Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 218:415–425

    Article  PubMed  CAS  Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci U S A 95:10671–10675

    Article  PubMed  CAS  Google Scholar 

  • Tichy H, Barth FG (1992) Fine structure of olfactory sensilla in myriapods and arachnids. Microsc Res Tech 22:372–391

    Article  PubMed  CAS  Google Scholar 

  • Tomer R, Denes A, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 241:800–809

    Article  CAS  Google Scholar 

  • Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57:449–468

    Article  PubMed  CAS  Google Scholar 

  • Tsuneki K (1992) Endocrine System of arthropods other than crustaceans and insects. In: Matsumoto A, Ishii S (eds) Atlas of endocrine organs. Springer, Berlin, pp 227–229

    Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc B 297:91–123

    Article  Google Scholar 

  • Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B 275:369–376

    Article  PubMed  Google Scholar 

  • Utting M, Agricola H, Sandeman RE, Sandeman DC (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416:245–261

    Article  PubMed  CAS  Google Scholar 

  • van Wijk M, Wadman WJ, Sabelis MW (2006a) Gross morphology of the central nervous system of a phytoseiid mite. Exptl Appl Acarol 40:205–216

    Article  Google Scholar 

  • van Wijk M, Wadman WJ, Sabelis MW (2006b) Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis. Exptl Appl Acarol 40:217–229

    Article  Google Scholar 

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    PubMed  CAS  Google Scholar 

  • von Békésy G (1967) Sensory inhibition. Princeton University Press, Princeton, NJ

    Google Scholar 

  • von Reumont BM, Jenner RA, Wills MA, Dell′Ampio E, Pass G, Ebersberger I, Meusemann K, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

    Google Scholar 

  • Wachowiak M, Diebel CE, Ache BW (1997) Local interneurons define functionally distinct regions within olfactory glomeruli. J Exptl Biol 200:989–1001

    Google Scholar 

  • Warrant E, Nilsson D-E (2006) Invertebrate vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Watson AHD (1986) The distribution of GABA-like immunoreactivity in the thoracic nervous system of the locust Schistocerca gregaria. Cell Tissue Res 246:331–341

    Article  CAS  Google Scholar 

  • Wegerhoff R, Breidbach O (1995) Comparative aspects of the chelicerate nervous system. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 159–179

    Chapter  Google Scholar 

  • Wehner R (1972) Information processing in the visual system of arthropods. Springer, Berlin

    Book  Google Scholar 

  • Wertz A, Rössler W, Obermayer M, Bickmeyer U (2006) Functional anatomy of the rhinophore of Aplysia punctata. Front Zool 3:11. doi:10.1186/1742-9994-3-6

    Article  CAS  Google Scholar 

  • Whitington PM (1996) Evolution of neuronal development in arthropods. Semin Cell Dev Biol 7:605–614

    Article  Google Scholar 

  • Whitington PM (2004) The development of the crustacean nervous system. In: Scholts G (ed) Evolutionary developmental biology of Crustacea, Crustacean Issues, vol 15. Balkema, Lisse, pp 135–167

    Google Scholar 

  • Whitington PM (2006) The evolution of arthropod nervous systems: insights from neural development in the Onychophora and Myriapoda. In: Striedler GF, Rubenstein JLR, Kaas JH (eds) Theories, development, invertebrates. Academic, Oxford, pp 317–336

    Google Scholar 

  • Whitington PM, Bacon JP (1997) The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 295–304

    Google Scholar 

  • Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: Insights from the Onychophora. Arthropod Struct Dev 40:193–209

    Article  PubMed  Google Scholar 

  • Whitington PM, Meier T, King P (1991) Segmentation, neurogenesis and formation of early axonal pathways in the centipede, Ethmostigmus rubipes (Brandt). Roux’s Arch Dev Biol 199:349–363

    Article  Google Scholar 

  • Wiens TJ (1989) Common and specific inhibition in leg muscles of decapods: sharpened distinctions. J Neurobiol 20:458–469

    Article  PubMed  CAS  Google Scholar 

  • Wiens TJ, Wolf H (1993) The inhibitory motoneurons of crayfish thoracic limbs: structures and phylogenetic comparisons. J Comp Neurol 336:61–278

    Article  Google Scholar 

  • Wiersma CAG, Roach J, Glantz RM (1982) Neuronal integration in the optic system. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea, vol 4., Neuronal integration and behavior. Academic Press, New York, pp 1–31

    Google Scholar 

  • Wiese K (2001) The crustacean nervous system. Springer, Berlin

    Google Scholar 

  • Wiese K (2002) Crustacean experimental systems in neurobiology. Springer, Berlin

    Book  Google Scholar 

  • Wildt M, Harzsch S (2002) A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 52:117–132

    Article  PubMed  Google Scholar 

  • Wolf H (1990) Activity patterns of inhibitory motoneurons and their impact on leg movement in tethered walking locusts. J Exptl Biol 152:281–304

    Google Scholar 

  • Wolf H (2008) The pectine organs of the scorpion, Vaejovis spinigerus: structure and central (glomerular) projections. Arthropod Struct Dev 37:67–80

    Article  PubMed  Google Scholar 

  • Wolf H, Harzsch S (2002a) The neuromuscular system in the walking legs of a scorpion. 1. Arrangement of muscles and innervation in the walking legs of a scorpion: Vaejovis spinigerus (Wood, 1863) Vaejovidae, Scorpiones, Arachnida. Arthropod Struct Dev 31:185–202

    Article  PubMed  Google Scholar 

  • Wolf H, Harzsch S (2002b) The neuromuscular system in the walking legs of a scorpion. 2. Inhibitory innervation of the walking legs of a scorpion: Vaejovis spinigerus (Wood, 1863), Vaejovidae, Scorpiones, Arachnida. Arthropod Struct Dev 31:203–215

    Article  PubMed  Google Scholar 

  • Wolf H, Harzsch S (2012) Serotonin-immunoreactive neurons in the scorpions’ pectine neuropils: similarities to insect and crustacean olfactory centers? Zoology 115:151–159

    Article  PubMed  Google Scholar 

  • Wolff G, Harzsch S, Hansson BS, Brown S, Strausfeld NJ (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520:2824–2846

    Article  PubMed  Google Scholar 

  • Zeil J, Layne J (2002) Path integration in fiddler crabs and its relation to habitat and social life. In: Wiese K (ed) Crustacean experimental systems in neurobiology. Springer, Heidelberg, pp 227–246

    Chapter  Google Scholar 

  • Zeil J, Sandeman RE, Sandeman DC (1985) Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J Comp Physiology A 157:607–617

    Article  CAS  Google Scholar 

  • Zube C, Kleineidam CJ, Kirschner S, Neef J, Rössler W (2008) Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. J Comp Neurol 506:425–441

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Sombke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loesel, R., Wolf, H., Kenning, M., Harzsch, S., Sombke, A. (2013). Architectural Principles and Evolution of the Arthropod Central Nervous System. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_13

Download citation

Publish with us

Policies and ethics