Skip to main content

New Trends Based on Experimental Results in the Treatment of Sarcoma

  • Chapter
  • First Online:
  • 1185 Accesses

Part of the book series: European Instructional Lectures ((EICL,volume 13))

Abstract

The enduring impasse in the success rate of conventional treatment may be overcome by a critical re-appraisal of conventional research methods and available therapeutic tools, focussing on the complexity of the tumour microenvironment. Current methods do not reproduce the hypoxic, acidic conditions at the tumour site nor the mutual influences of cancer cells with reactive fibroblasts and immune cells. A peculiar feature of these interactions is an increased acidity of the extracellular environment, and this can be exploited for pharmacological therapies targeting the extrusion of protons from the cellular compartments, inducing selective cytotoxic effects on cancer cells, and for a photodynamic approach based on acid-seeking agents, extending the chances of conservative surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreev OA, Dupuy AD, Segala M et al (2007) Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci USA 104:7893–7898

    Article  PubMed  CAS  Google Scholar 

  2. Aoki J, Watanabe H, Shinozaki T (2001) FDG-PET of primary benign and malignant bone tumours: standardized uptake value in 52 lesions. Radiology 219:774–777

    PubMed  CAS  Google Scholar 

  3. Avnet S, Sciacca L, Salerno M et al (2009) Insulin receptor isoform a and insulin-like growth factor II as additional treatment targets in human osteosarcoma. Cancer Res 69:2443–2452

    Article  PubMed  CAS  Google Scholar 

  4. Bacci G, Ferrari S, Longhi A et al (1988) Prognostic significance of serum LDH in Ewing’s sarcoma of bone. Oncol Rep 6:807–811

    Google Scholar 

  5. Bacci G, Longhi A, Ferrari S et al (2004) Prognostic significance of serum lactate dehydrogenase in osteosarcoma of the extremity: experience at Rizzoli in 1421 patients treated over the last 30 years. Tumori 90:478–484

    PubMed  Google Scholar 

  6. Baldini N, Scotlandi K, Barbanti-Brodano G et al (1995) Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med 333:1380–1385

    Article  PubMed  CAS  Google Scholar 

  7. Bastiaannett E, Groen H, Jager PL (2004) The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 30:83–101

    Article  Google Scholar 

  8. Bien E, Rapala M, Krazczyk M et al (2010) The serum levels of soluble interleukin-2 receptor alpha and lactate dehydrogenase but not B2-microglobulin correlate with selected clinico-pathological prognostic factors and response to therapy in childhood soft tissue sarcomas. J Cancer Res Clin Oncol 136:293–305

    Article  PubMed  CAS  Google Scholar 

  9. Bonuccelli G, Tisirigos A, Whitaker-Menezes D et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514

    Article  PubMed  CAS  Google Scholar 

  10. Calcinotto A, Filipazzi P, Grioni M et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    Article  PubMed  CAS  Google Scholar 

  11. De Milito A, Canese R, Marinio ML et al (2010) pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 127:207–219

    Article  PubMed  Google Scholar 

  12. DeClerck K, Elble RC (2010) The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy. Front Biosci 15:213–225

    Article  PubMed  CAS  Google Scholar 

  13. Engin K, Leeper DB, Cater JR et al (1995) Extracellular pH distribution in human tumours. Int J Hyperthermia 11:211–216

    Article  PubMed  CAS  Google Scholar 

  14. Fais S, De Milito A, You H et al (2007) Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res 67:10627–10630

    Article  PubMed  CAS  Google Scholar 

  15. Feldser D, Agani F, Iyer NV et al (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59:3915–3918

    PubMed  CAS  Google Scholar 

  16. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  CAS  Google Scholar 

  17. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61

    Article  PubMed  CAS  Google Scholar 

  18. Gullino PM, Grantham FH, Smith SH et al (1965) Modifications of the acid–base status of the internal milieu of tumors. J Natl Cancer Inst 34:857–869

    PubMed  CAS  Google Scholar 

  19. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  PubMed  CAS  Google Scholar 

  20. Hashiguchi S, Kusuzaki K, Murata H et al (2002) Acridine orange excited by low-dose radiation has a strong cytocidal effect on mouse osteosarcoma. Oncology 62:85–93

    Article  PubMed  CAS  Google Scholar 

  21. International Agency for Research on Cancer (1978) Acridine orange. In: IARC monographs program on the evaluation of carcinogenic risks to humans, vol 16. IARC Press, Lyon, p 145

    Google Scholar 

  22. Krähling H, Mally S, Eble JA et al (2009) The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch 458:1069–1083

    Article  PubMed  Google Scholar 

  23. Krolenko SA, Adamyan SY, Belyaeva TN et al (2006) Acridine orange accumulation in acid organelles of normal and vacuolated frog skeletal muscle fibres. Cell Biol Int 30:933–939

    Article  PubMed  CAS  Google Scholar 

  24. Kusuzaki K, Aomori K, Suginoshita T et al (2000) Total tumor cell elimination with minimum damage to normal tissues in musculoskeletal sarcomas by photodynamic reaction with acridine orange. Oncology 59:174–180

    Article  PubMed  CAS  Google Scholar 

  25. Kusuzaki K, Minami G, Takeshita H et al (2000) Photodynamic inactivation with acridine orange on a multi-drug-resistant mouse osteosarcoma cell line. Jpn J Cancer Res 91:439–445

    Article  PubMed  CAS  Google Scholar 

  26. Kusuzaki K, Murata H, Matsubara T et al (2005) Clinical outcome of a new photodynamic therapy with acridine orange for synovial sarcomas. Photochem Photobiol 81:705–709

    Article  PubMed  CAS  Google Scholar 

  27. Kusuzaki K, Murata H, Matsubara T et al (2005) Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Res 25:1225–1236

    PubMed  CAS  Google Scholar 

  28. Kusuzaki K, Murata H, Takeshita H et al (2000) Intracellular binding sites of acridine orange in living osteosarcoma cells. Anticancer Res 20:971–976

    PubMed  CAS  Google Scholar 

  29. Lu X, Qin W, Li J et al (2005) The growth of metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65:6843–6849

    Article  PubMed  CAS  Google Scholar 

  30. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB et al (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–3276

    Article  PubMed  CAS  Google Scholar 

  31. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D et al (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 9:3515–3533

    Article  PubMed  CAS  Google Scholar 

  32. Martinez-Zaguilan R, Seftor EA et al (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:176–186

    Article  PubMed  CAS  Google Scholar 

  33. Matsubara T, Kusuzaki K, Matsumine A et al (2006) Acridine orange used for photodynamic therapy accumulates in malignant musculoskeletal tumors depending on pH gradient. Anticancer Res 26:187–194

    PubMed  CAS  Google Scholar 

  34. Matsubara T, Kusuzaki K, Matsumine A et al (2009) A new therapeutic modality involving acridine orange excitation by photon energy used during reduction surgery for rhabdomyosarcomas. Oncol Rep 21:89–94

    Article  PubMed  Google Scholar 

  35. Matsubara T, Kusuzaki K, Matsumine A et al (2010) Clinical outcomes of minimally invasive surgery using acridine orange for musculoskeletal sarcomas around the forearm, compared with conventional limb salvage surgery after wide resection. J Surg Oncol 102:271–275

    Article  PubMed  Google Scholar 

  36. Matsubara T, Kusuzaki K, Matsumine A et al (2010) Photodynamic therapy with acridine orange in musculoskeletal sarcomas. J Bone Joint Surg Br 92:760–762

    Article  PubMed  CAS  Google Scholar 

  37. McCann J, Ames BN (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci USA 73:950–954

    Article  PubMed  CAS  Google Scholar 

  38. Mizobuchi H, Garcia-Castellano JM, Philip S et al (2008) Hypoxia markers in human osteosarcoma: an exploratory study. Clin Orthop Relat Res 466:2052–2059

    Article  PubMed  Google Scholar 

  39. Mohyeldin A, Garzòn-Muvdi T, Quiñones-Hinolojosa A (2010) Oxygen in stem cell biology: a critical ­component of the stem cell niche. Cell Stem Cell 7:150–161

    Article  PubMed  CAS  Google Scholar 

  40. Morimura T, Fujita K, Akita M et al (2008) The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma. Pediatr Surg Int 24:1087–1094

    Article  PubMed  Google Scholar 

  41. Moussavi-Harami F, Mollano A, Martin JA et al (2006) Intrinsic radiation resistance in human chondrosarcoma. Biochem Biophys Res Commun 346:379–385

    Article  PubMed  CAS  Google Scholar 

  42. Murakami T, Shibuya I, Ise T et al (2001) Elevated expression of vacuolar proton pump genes and cellular pHin cisplatin resistance. Int J Cancer 93:869–874

    Article  PubMed  CAS  Google Scholar 

  43. Nagaraj NS, Vigneswaran N, Zacharias W (2007) Hypoxia inhibits TRAIL-induced tumor cell apoptosis: involvement of lysosomal cathepsins. Apoptosis 12:125–139

    Article  PubMed  CAS  Google Scholar 

  44. Nakamura T, Kusuzaki K, Matsubara T et al (2008) A new limb salvage surgery in cases of high-grade soft tissue sarcoma using photodynamic surgery, followed by photo- and radio- dynamic therapy with acridine orange. J Surg Oncol 97:523–528

    Article  PubMed  Google Scholar 

  45. Newell K, Franchi A, Pouyssegur J et al (1993) Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci USA 90:1127–1131

    Article  PubMed  CAS  Google Scholar 

  46. Noebauer-Huhmann IM, Panotopoulos J, Kotz RI (2010) Bone tumours: work up 2009. In: Bentley G (ed) European instructional lectures, vol 10. Springer, Berlin, pp 23–36

    Chapter  Google Scholar 

  47. Nygren P, Larsson R (2003) Overview of the clinical efficacy of investigational anticancer drugs. J Intern Med 253:46–75

    Article  PubMed  CAS  Google Scholar 

  48. Ocana A, Pandiella A, Siu LL et al (2011) Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol 8:200–209

    Article  CAS  Google Scholar 

  49. Parks SK, Chiche J, Poyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    Article  PubMed  CAS  Google Scholar 

  50. Pavlides S, Tsirigos A, Migneco G et al (2010) The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9:3485–3505

    Article  PubMed  CAS  Google Scholar 

  51. Pavlides S, Whitaker-Menezes D, Castello-Cros R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    Article  PubMed  CAS  Google Scholar 

  52. Rofstad EK, Mathiesen N, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

    Article  PubMed  CAS  Google Scholar 

  53. Schwickert G, Walenta S, Sundfør K et al (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759

    PubMed  CAS  Google Scholar 

  54. Swietach P, Patiar S, Supuran C et al (2009) The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three-dimensional tumor cell growth. J Biol Chem 284:20299–20310

    Article  PubMed  CAS  Google Scholar 

  55. Szendröi M, Sápi Z, Karlinger K et al (2010) Diagnosis and treatment of soft tissue sarcomas. In: Bentley G (ed) European instructional lectures, vol 10. Springer, Berlin, pp 37–50

    Chapter  Google Scholar 

  56. Tian L, Bae YH (2012) Cancer nanomedicine targeting tumor extracellular pH. Colloids Surf B Biointerfaces 99:116–126

    Article  PubMed  CAS  Google Scholar 

  57. Van Duuren BL, Sivak A, Katz C et al (1969) Tumorigenicity of acridine orange. Br J Cancer 23:587–590

    Article  PubMed  Google Scholar 

  58. Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren. Biochem Zeitschrift 152:319–344

    Google Scholar 

  59. Warren L, Jardillier JC, Malarska A et al (1992) Increased accumulation of drugs in multidrug-­resistant cells induced by liposomes. Cancer Res 52:3241–3245

    PubMed  CAS  Google Scholar 

  60. Yang QC, Zeng BF, Dong Y et al (2007) Overexpression of hypoxia-inducible factor-1(alpha) in human osteosarcoma: correlation with clinicopathological parameters and survival outcome. Jpn J Clin Oncol 37:127–134

    Article  PubMed  Google Scholar 

  61. Zdolsek JM (1993) Acridine orange-mediated photodamage to cultured cells. APMIS 101:127–132

    Article  PubMed  CAS  Google Scholar 

  62. Zelenin AV (1966) Fluorescence microscopy of lysosomes and related structures in living cells. Nature 212:425–426

    Article  PubMed  CAS  Google Scholar 

  63. Zelenin AV, Liapunova EA (1964) Inhibition of protein synthesis by acridine orange. Nature 204:45–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Grant support: Ministry of Health (Grant RBAP10447J_004 to N. Baldini), Italian Association for Cancer Research (Grant 11426 to N. Baldini), IOR “5 per mille”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Baldini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 EFORT

About this chapter

Cite this chapter

Baldini, N., Kusuzaki, K. (2013). New Trends Based on Experimental Results in the Treatment of Sarcoma. In: Bentley, G. (eds) European Instructional Lectures. European Instructional Lectures, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36149-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36149-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36148-7

  • Online ISBN: 978-3-642-36149-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics