Guided Merging of Sequence Diagrams

Download Book (9,958 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests.
Download Chapter (398 KB)

Abstract

The employment of optimistic model versioning systems allows multiple developers of a team to work independently on their local copies of a software model. The merging process towards one consolidated version can be error-prone and time-consuming when performed without any tool support. Recently, several sophisticated approaches for model merging have been presented. However, even for multi-view modeling languages like UML, which distribute the information on the modeled system over different views, these views are merged independently of each other. Hence, inconsistencies are likely to be introduced into the merged model. We suggest to solve this problem by exploiting information stored in one view as constraint for the computation of a consolidated version of another view. More specifically, we demonstrate how state machines can guide the integration of parallel changes performed on a sequence diagram. We give a concise formal description of this problem and suggest a translation to the satisfiability problem of propositional logic.