Skip to main content

What’s Your Next Move? Detecting Movement Intention for Stroke Rehabilitation

  • Chapter
  • First Online:
Brain-Computer Interface Research

Abstract

BCIs have recently been identified as a method to promote restorative neuroplastic changes in patients with severe motor impairment, such as after a stroke. In this chapter, we describe a novel therapeutic strategy for hand rehabilitation making use of this method. The approach consists of recording brain activity in cortical motor areas by means of near-infrared spectroscopy, and complementing the cortical signals with physiological data acquired simultaneously. By combining these signals, we aim at detecting the intention to move using a multi-modal classification algorithm. The classifier output then triggers assistance from a robotic device, in order to execute the movement and provide sensory stimulation at the level of the hand as response to the detected motor intention. Furthermore, the cortical data can be used to control audiovisual feedback, which provides a context and a motivating training environment. It is expected that closing the sensorimotor loop with such a brain-body-robot interface will promote neuroplasticity in sensorimotor networks and support the recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V.L. Roger et al., Heart disease and stroke statistics–2011 update. Circulation 123, e18–e209 (2011)

    Article  Google Scholar 

  • A. Pollock, G.D. Baer, P. Langhorne, V.M. Pomeroy, Physiotherapy treatment approaches for stroke. Stroke 39, 519–520 (2008)

    Article  Google Scholar 

  • C.D. Takahashi, L. Der-Yeghiaian, L. Vu, R.R. Motiwala, S.C. Cramer, Robot-based hand motor therapy after stroke. Brain 131, 425–437 (2008)

    Article  Google Scholar 

  • O. Lambercy, L. Dovat, H. Yun, S.K. Wee, C. Kuah, K. Chua, R. Gassert, T. Milner, C.L. Teo, E. Burdet, Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J. NeuroEng. Rehabil 8, 63 (2011)

    Google Scholar 

  • N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J. Rehabil. Res. Dev. 43, 605–618 (2006)

    Article  Google Scholar 

  • E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, N. Birbaumer, Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)

    Article  Google Scholar 

  • T.E. Ward, C.J. Soraghan, F. Matthews, C. Markham, A concept for extending the applicability of constraint-induced movement therapy through motor cortex activity feedback using a neural prosthesis. Comput. Intell. Neurosci. 51363, 1–9 (2007)

    Google Scholar 

  • S.C. Cramer et al., Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609 (2011)

    Article  Google Scholar 

  • W. Wang, J.L. Collinger, M.A. Perez, E.C. Tyler-Kabara, L.G. Cohen, N. Birbaumer, S.W. Brose, A.B. Schwartz, M.L. Boninger, D.J. Weber, Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 21, 157–178 (2010)

    Article  MATH  Google Scholar 

  • M. Wolf, M. Ferrari, V. Quaresima, Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 12, 062104 (2007)

    Article  Google Scholar 

  • T. Muehlemann, D. Haensse, M. Wolf, Wireless miniaturized in vivo near infrared imaging. Opt. Express 16, 10323–10330 (2008)

    Article  Google Scholar 

  • B.N. Pasley, R.D. Freeman, Neurovascular coupling. Scholarpedia 3, 5340 (2008)

    Article  Google Scholar 

  • S. Coyle, T. Ward, C. Markham, G. McDarby, On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Meas. 25, 815–822 (2004)

    Article  Google Scholar 

  • R. Sitaram, Y. Hoshi, C. Guan, Near infrared spectroscopy based brain–computer interface, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5852, pp. 434–442 (2005)

    Google Scholar 

  • X. Cui, S. Bray, A.L. Reiss, Speeded near infrared spectroscopy (NIRS) response detection. PLoS One 5, e15474 (2010)

    Google Scholar 

  • R. Sitaram, H. Zhang, C. Guan, M. Thulasidis, Y. Hoshi, A. Ishikawa, K. Shimizu, N. Birbaumer, Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34, 1416–1427 (2007)

    Article  Google Scholar 

  • S.M. Coyle, T.E. Ward, C.M. Markham, Brain–computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4, 219–226 (2007)

    Article  Google Scholar 

  • L. Holper, M. Wolf, Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. J. NeuroEng. Rehabil. 8, 34 (2011)

    Article  Google Scholar 

  • M. Naito, Y. Michioka, K. Ozawa, Y. Ito, M. Kiguchi, T. Kanazawa, A communication mean for totally locked-in als patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans. Inf. Syst. E90-D, 1028–1037 (2007)

    Google Scholar 

  • S.D. Power, T.H. Falk, T. Chau, Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural Eng. 7, 026002 (2010)

    Article  Google Scholar 

  • T. Falk, M. Guirgis, S. Power, T. Chau, Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 136–146 (2011)

    Article  Google Scholar 

  • S. Luu, T. Chau, Decoding subjective preference from single-trial near-infrared spectroscopy signals. J. Neural Eng. 6, 016003 (2009)

    Article  Google Scholar 

  • K. Tai, T. Chau, Single-trial classification of NIRS signals during emotional induction tasks: towards a corporeal machine interface. J. Neuroeng. Rehabil. 6, 39 (2009)

    Article  Google Scholar 

  • R. Zimmermann, L. Marchal-Crespo, O. Lambercy, M.C. Fluet, R. Riener, M. Wolf, R. Gassert, Towards a BCI for sensorimotor training: initial results from simultaneous fNIRS and biosignal recordings, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011 (EMBC 2011), pp. 6339–6343 (2011)

    Google Scholar 

  • R. Zimmermann, L. Marchal-Crespo, J. Edelmann, O. Lambercy, M.C. Fluet, R. Riener, M. Wolf, R. Gassert, Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study. J. NeuroEng. Rehabil. 10, 4 (2013)

    Google Scholar 

  • J.C. Metzger, O. Lambercy, D. Chapuis, R. Gassert, Design and characterization of the ReHapticKnob, a robot for assessment and therapy of hand function, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, 25–30 Sept 2011, pp. 3074–3080 (2011)

    Google Scholar 

  • J.C. Metzger, O. Lambercy, R. Gassert, High-Fidelity rendering of virtual objects with the ReHapticKnob—Novel avenues in robot-assisted rehabilitation of hand function, in IEEE Haptics Symposium, 4–7 March 2012, pp. 51–56 (2012)

    Google Scholar 

  • A.S. Merians, D. Jack, R. Boian, M. Tremaine, G.C. Burdea, S.V. Adamovich, M. Recce, H. Poizner, Virtual reality-augmented rehabilitation for patients following stroke. Phys. Ther. 82, 898–915 (2002)

    Google Scholar 

  • L. Holper, T. Muehlemann, F. Scholkmann, K. Eng, D. Kiper, M. Wolf, Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). J. NeuroEng. Rehabil. 7, 57 (2010)

    Article  Google Scholar 

  • J. Brand, O. Geisseler, L. Holper, M.C. Hepp-Reymond, M. Morari, D. Kiper, K. Eng, The effects of manipulation of visual feedback in virtual reality on cortical activity: a pilot study, in 2011 International Conference on Virtual Rehabilitation (ICVR), 27–29 June 2011, pp. 1–2 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zimmermann, R. et al. (2013). What’s Your Next Move? Detecting Movement Intention for Stroke Rehabilitation. In: Guger, C., Allison, B., Edlinger, G. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36083-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36083-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36082-4

  • Online ISBN: 978-3-642-36083-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics