Skip to main content

Manipulation and Isolation of Individual DNA Molecules with Atomic Force Microscope

  • Chapter
  • First Online:
DNA Nanotechnology
  • 3442 Accesses

Abstract

Isolation and analysis of single DNA fragment are of great importance for both fundamental research and future biomedical applications. In this chapter, we introduce a technique based on atomic force microscope (AFM) to manipulate and isolate individual DNA molecules at the nanometer scale. The AFM was used to site specifically cut, push, and pick up single DNA fragments from solid surfaces. Subsequent amplification of the isolated single DNA fragments indicates that the DNA molecules keep their bioactivity after AFM manipulation. We believe that new applications will continue to be developed to further expand our repertoire of the AFM-based nanomanipulation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Namasivayam V, Larson RG, Burke DT, Burns MA (2003) Light-induced molecular cutting: localized reaction on a single DNA molecule. Anal Chem 75:4188–4194

    Article  CAS  Google Scholar 

  2. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  3. Zhao X, Tapec-Dytioco R, Wang K, Tan W (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal Chem 75:3476–3483

    Article  CAS  Google Scholar 

  4. Hashiguchi G, Goda T, Hosogi M, Hirano K, Kaji N, Baba Y, Kakushima K, Fujita H (2003) DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal Chem 75:4347–4350

    Article  CAS  Google Scholar 

  5. Shortreed MR, Li H, Huang W, Yeung ES (2000) High-throughput single-molecule DNA screening based on electrophoresis. Anal Chem 72:2879–2885

    Article  CAS  Google Scholar 

  6. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  7. Muller DJ, Schabert FA, Buldt G, Engel A (1995) Imaging purple membranes in aqueous-solutions at subnanometer resolution by atomic-force microscopy. Biophys J 68:1681–1686

    Article  CAS  Google Scholar 

  8. Yamada H, Kobayashi K, Fukuma T, Hirata Y, Kajita T, Matsushige K (2009) Molecular resolution imaging of protein molecules in liquid using frequency modulation atomic force microscopy. Appl Phys Express 2:095007

    Article  Google Scholar 

  9. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunnelling microscope. Nature 344:524–526

    Article  CAS  Google Scholar 

  10. Boland JJ (1993) Manipulating chlorine atom bonding on the Si(100)-(2Ā1) surface with the STM. Science 262:1703–1706

    Article  CAS  Google Scholar 

  11. Mo YW (1993) Reversible rotation of antimony dimers on the silicon (001) surface with a scanning tunneling microscope. Science 261:886–888

    Article  CAS  Google Scholar 

  12. Bustamante C, Keller D (1995) Scanning force microscopy in biology. Phys Today 48:32–38

    Article  Google Scholar 

  13. Hu J, Zhang Y, Gao HB, Lik MQ, Hartmannk U (2002) Artificial DNA patterns by mechanical nanomanipulation. Nano Lett 2:55–57

    Article  CAS  Google Scholar 

  14. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098

    Article  CAS  Google Scholar 

  15. An H, Guo Y, Zhang X, Zhang Y, Hu J (2005) Nano-dissection of single- and double-stranded DNA by atomic force microscopy. J Nanosci Nanotechnol 5:1656–1659

    Article  Google Scholar 

  16. Thalhammer S, Stark RW, Muller S, Wienberg J, Heckl WM (1997) The atomic force microscope as a new microdissecting tool for the generation of genetic probes. J Struct Biol 119:232–237

    Article  CAS  Google Scholar 

  17. Xu XM, Ikai A (1998) Recovery and amplification of plasmid DNA with atomic force microscopy and the polymerase chain reaction. Anal Chim Acta 361:1–7

    Article  CAS  Google Scholar 

  18. Guthold M, Cubicciotti R, Superfine R, Taylor R (2002) Novel methodology to detect, isolate, amplify and characterize single aptamer molecules with desirable target-binding properties. Biophys J 82:797

    Google Scholar 

  19. Lü JH, Li HK, An HJ, Wang GH, Wang Y, Li MQ, Zhang Y, Hu J (2004) Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule PCR. J Am Chem Soc 126:11136–11137

    Article  Google Scholar 

  20. Zhang Y, Lu JH, Li MQ, Hu J (2007) A strategy for ordered single molecule sequencing based on nanomanipulation (OsmSN). Int J Nanotechnol 4:163–170

    Article  Google Scholar 

  21. An HJ, Huang JH, Lu M, Li XL, Lu JH, Li HK, Zhang Y, Li MQ, Hu J (2007) Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation. Nanotechnology 18:225101

    Article  Google Scholar 

  22. Buriak JM (2004) Chemistry with nanoscale perfection. Science 304:692–693

    Article  CAS  Google Scholar 

  23. Li B, Zhang Y, Yan S, Lu J, Ye M, Li M, Hu J (2007) Positioning scission of single DNA molecules with nonspecific endonuclease based on nanomanipulation. J Am Chem Soc 129:6668–6669

    Article  CAS  Google Scholar 

  24. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) Dip-pen nanolithography. Science 283:661–663

    Article  CAS  Google Scholar 

  25. Long F, Wang C, Lü M, Zhang F, Sun J, Hu J (2011) Optimizing single DNA molecules manipulation by AFM. J Microsc 243:118–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 10,975,175 and 90,923,002) and the Chinese Academy of Sciences (No. KJCX2-EW-N03). Y. Zhang thanks the Max Planck Society for support of a partner group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Hu, J. (2013). Manipulation and Isolation of Individual DNA Molecules with Atomic Force Microscope. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_5

Download citation

Publish with us

Policies and ethics