Skip to main content

Physiological Bases of Physical Limitations During Exercise

  • Chapter
  • First Online:

Abstract

During the execution of physical activity, obese individuals suffer from considerable functional limitations which are principally related to the excess of their body mass, more than to other morbid conditions co-occuring with obesity. Important changes in body composition are associated with the rise in body adiposity, so that obese persons, and women in particular, result with a lower amount of fat-free mass and leg muscle volume per unit body mass, but with absolute larger quantities. Therefore, motor performance of obese individuals during anaerobic activity, which includes the execution of short and intense efforts, is largely reduced by the imbalance between the size of available skeletal muscle and the disproportionate accumulation of fat tissue, although the capacity of strength and absolute leg power output production are increased. Differently, activities relying upon aerobic metabolism, such as bicycle ergometer exercise or walking, are limited in obese subjects principally due to the greater metabolic energy required to move the heavier body, or single body segments involved in movements, which may ultimately exceed the limits of the aerobic capacity. The physiological mechanisms underlying these functional limitations during exercise in obesity should be considered when devising protocols of physical activity and rehabilitation aiming to cure the body mass excess.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelmoula A, Martin V, Bouchant A, Walrand S, Lavet C, Taillardat M, Maffiuletti NA, Boisseau N, Duché P, Ratel S (2012) Knee extension strength in obese and nonobese male adolescents. Appl Physiol Nutr Metab 37:269–275

    Article  PubMed  Google Scholar 

  • Anton-Kuchly B, Roger P, Varene P (1984) Determinants of increased energy cost of submaximal exercise in obese subjects. J Appl Physiol 56:18–23

    PubMed  CAS  Google Scholar 

  • Berry MJ, Storsteen JA, Woodard CM (1993) Effects of body mass on exercise efficiency and VO2 during steady-state cycling. Med Sci Sports Exerc 25:1031–1037

    PubMed  CAS  Google Scholar 

  • Browning RC, Kram R (2005) Energetic cost and preferred speed of walking in obese versus normal weight women. Obes Res 13:891–899

    Article  PubMed  Google Scholar 

  • Browning RC, Kram R (2009) Pound for pound: Working out how obesity influences the energetics of walking. J Appl Physiol 106:1755–1756

    Article  PubMed  Google Scholar 

  • Browning RC, Baker EA, Herron JA, Kram R (2006) Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol 100:390–398

    Article  PubMed  Google Scholar 

  • Browning RC, Modica JR, Kram R, Goswami A (2007) he effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 39:515–525

    Article  PubMed  Google Scholar 

  • Coyle EF, Sidossis LS, Horowitz JF, Beltz JD (1992) Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 24:782–788

    PubMed  CAS  Google Scholar 

  • Davies CT (1973) The contribution of leg (muscle plus bone) volume to maximum aerobic power output: the effects of anaemia, malnutrition and physical activity. J Physiol 231:108P–109P

    PubMed  CAS  Google Scholar 

  • Donelan JM, Kram R, Kuo AD (2001) Mechanical and metabolic determinants of the preferred step width in human walking. Proc Biol Sci 268:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Ellis KJ (2000) Human body composition: in vivo methods. Physiol Rev 80:649–680

    PubMed  CAS  Google Scholar 

  • Francescato MP, Girardis M, di Prampero PE (1995) Oxygen cost of internal work during cycling. Eur J Appl Physiol Occup Physiol 72:51–57

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN (2001a) In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 268:229–233

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001b) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255

    Article  PubMed  CAS  Google Scholar 

  • Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE (1997) Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 46:1579–1585

    Article  PubMed  CAS  Google Scholar 

  • Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89:104–110

    PubMed  CAS  Google Scholar 

  • Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol 90:2157–2165

    PubMed  CAS  Google Scholar 

  • Goran M, Fields DA, Hunter GR, Herd SL, Weinsier RL (2000) Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord 24:841–848

    Article  PubMed  CAS  Google Scholar 

  • Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37

    PubMed  CAS  Google Scholar 

  • Hills AP, Hennig EM, McDonald M, Bar-Or O (2001) Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. Int J Obes Relat Metab Disord 25:1674–1679

    Article  PubMed  CAS  Google Scholar 

  • Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR (2008) Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther 88:1336–1344

    Article  PubMed  Google Scholar 

  • Hulens M, Vansant G, Lysens R, Claessens AL, Muls E (2001a) Exercise capacity in lean versus obese women. Scand J Med Sci Sports 11:305–309

    Article  PubMed  CAS  Google Scholar 

  • Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S (2001b) Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord 25:676–681

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann GP (2005) Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol 99:603–608

    Article  PubMed  Google Scholar 

  • Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, Martel GF, Siegel EL, Fozard JL, Jeffrey Metter E, Fleg JL, Hurley BF (2000) Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci 55: M641–648

    Google Scholar 

  • Kelley DE, Slasky BS, Janosky J (1991) Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr 54:509–515

    PubMed  CAS  Google Scholar 

  • Ker RF, Bennett MB, Bibby SR, Kester RC, Alexander RM (1987) The spring in the arch of the human foot. Nature 325:147–149

    Article  PubMed  CAS  Google Scholar 

  • Koyal SN, Whipp BJ, Huntsman D, Bray GA, Wasserman K (1976) Ventilatory responses to the metabolic acidosis of treadmill and cycle ergometry. J Appl Physiol 40:864–867

    PubMed  CAS  Google Scholar 

  • Kress JP, Pohlman AS, Alverdy J, Hall JB (1999) The impact of morbid obesity on oxygen cost of breathing (VO2RESP) at rest. Am J Respir Crit Care Med 160:883–886

    PubMed  CAS  Google Scholar 

  • Kriketos AD, Baur LA, O’Connor J, Carey D, King S, Caterson ID, Storlien LH (1997) Muscle fibre type composition in infant and adult populations and relationships with obesity. Int J Obes Relat Metab Disord 21:796–801

    Article  PubMed  CAS  Google Scholar 

  • Lafortuna CL, Fumagalli E, Vangeli V, Sartorio A (2002) Lower limb alactic anaerobic power output assessed with different techniques in morbid obesity. J Endocrinol Invest 25:134–141

    PubMed  CAS  Google Scholar 

  • Lafortuna CL, Agosti F, Marinone PG, Marazzi N, Sartorio A (2004) The relationship between body composition and muscle power output in men and women with obesity. J Endocrinol Invest 27:854–861

    PubMed  CAS  Google Scholar 

  • Lafortuna CL, Maffiuletti NA, Agosti F, Sartorio A (2005) Gender variations of body composition, muscle strength and power output in morbid obesity. Int J Obes (Lond) 29:833–841

    Article  CAS  Google Scholar 

  • Lafortuna CL, Proietti M, Agosti F, Sartorio A (2006) The energy cost of cycling in young obese women. Eur J Appl Physiol 97:16–25

    Article  PubMed  Google Scholar 

  • Lafortuna CL, Agosti F, Galli R, Busti C, Lazzer S, Sartorio A (2008) The energetic and cardiovascular response to treadmill walking and cycle ergometer exercise in obese women. Eur J Appl Physiol 103:707–717

    Article  PubMed  Google Scholar 

  • Lafortuna CL, Agosti F, Busti C, Galli R, Sartorio A (2009) The energy cost of cycling and aerobic performance of obese adolescent girls. J Endocrinol Invest 32:647–652

    PubMed  CAS  Google Scholar 

  • Lafortuna CL, Lazzer S, Agosti F, Busti C, Galli R, Mazzilli G, Sartorio A (2010) Metabolic responses to submaximal treadmill walking and cycle ergometer pedalling in obese adolescents. Scand J Med Sci Sports 20:630–637

    Article  PubMed  CAS  Google Scholar 

  • Lafortuna CL, Agosti F, De Col A, Pera F, Adorni F, Sartorio A (2012) Prevalence of the metabolic syndrome and its components among obese men and women in Italy. Obes Facts 5:127–137

    Article  PubMed  Google Scholar 

  • Llopis MA, Granada ML, Cuatrecasas G, Formiguera X, Sánchez-Planell L, Sanmartí A, Alastrué A, Rull M, Corominas A, Foz M (1998) Growth hormone-binding protein directly depends on serum leptin levels in adults with different nutritional status. J Clin Endocrinol Meta 83:2006–2011

    Article  CAS  Google Scholar 

  • Maffiuletti NA, Jubeau M, Munzinger U, Bizzini M, Agosti F, De Col A, Lafortuna CL, Sartorio A (2007) Differences in quadriceps muscle strength and fatigue between lean and obese subjects. Eur J Appl Physiol 101:51–59

    Article  PubMed  Google Scholar 

  • Margaria R (1938) Sulla fisiologia, e specialmente sul consumo energetico, della marcia e della corsa a varie velocità ed inclinazioni del terreno. Atti Accademia Nazionale dei Lincei. Memorie 7: 299-368

    Google Scholar 

  • Margaria R, Aghemo P, Rovelli E (1966) Measurement of muscular power (anaerobic) in man. J Appl Physiol 21:1662–1664

    PubMed  CAS  Google Scholar 

  • Mattsson E, Larsson UE, Rössner S (1997) Is walking for exercise too exhausting for obese women? Int J Obes Relat Metab Disord 21:380–386

    Article  PubMed  CAS  Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338:37–49

    PubMed  CAS  Google Scholar 

  • Melanson EL, Bell ML, Knoll JR, Coelho LB, Donahoo WT, Peters JC, Hill JO (2003) Body mass index and sex influence the energy cost of walking at self-selected speeds (Abstract). Med Sci Sports Exerc 35:S183

    Google Scholar 

  • Messier SP, Davies AB, Moore DT, Davis SE, Pack RJ, Kazmar SC (1994) Severe obesity: effects on foot mechanics during walking. Foot Ankle Int 15:29–34

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 106:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Myers MJ, Steudel K (1985) Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol 116:363–373

    PubMed  CAS  Google Scholar 

  • Needham DM (1971) Machina Cranis. The Biochemistry of Muscular Contraction in its Historical Development. Cambridge University Press, Cambridge

    Google Scholar 

  • Norgan NG (1994) Population differences in body composition in relation to the body mass index. Eur J Clin Nutr 48(Suppl 3):S10–S25

    PubMed  Google Scholar 

  • Pescatello LS, Kelsey BK, Price TB, Seip RL, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, Zoeller RF, Gordish-Dressman HA, Bilbie SM, Thompson PD, Hoffman EP (2007) The muscle strength and size response to upper arm, unilateral resistance training among adults who are overweight and obese. J Strength Cond Res 21:307–313

    PubMed  Google Scholar 

  • Peyrot N, Thivel D, Isacco L, Morin JB, Duche P, Belli A (2009) Do gait mechanical parameters explain the higher metabolic cost of walking in obese adolescents? J Appl Physiol 106:1763–1770

    Article  PubMed  Google Scholar 

  • di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    Article  PubMed  Google Scholar 

  • Roelen CA, Koppeschaar HP, de Vries WR, Snel YE, Doerga ME, Zelissen PM, Thijssen JH, Blankenstein MA (1997) Visceral adipose tissue is associated with circulating high affinity growth hormone-binding protein. J Clin Endocrinol Metab 82:760–764

    Article  PubMed  CAS  Google Scholar 

  • Ryan AS, Nicklas BJ (1999) Age-related changes in fat deposition in mid-thigh muscle in women: relationships with metabolic cardiovascular disease risk factors. Int J Obes Relat Metab Disord 23:126–132

    Article  PubMed  CAS  Google Scholar 

  • Saibene F, Minetti AE (2003) Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol 88:297–316

    Article  PubMed  Google Scholar 

  • Salvadori A, Fanari P, Fontana M, Buontempi L, Saezza A, Baudo S, Miserocchi G, Longhini E (1999) Oxygen uptake and cardiac performance in obese and normal subjects during exercise. Respiration 66:25–33

    Article  PubMed  CAS  Google Scholar 

  • Sartorio A, Agosti F, De Col A, Lafortuna CL (2006) Age- and gender-related variations of leg power output and body composition in severely obese children and adolescents. J Endocrinol Invest 29:48–54

    PubMed  CAS  Google Scholar 

  • Schutz Y, Kyle UU, Pichard C (2002) Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 years. Int J Obes Relat Metab Disord 26:953–960

    Article  PubMed  CAS  Google Scholar 

  • Spyropoulos P, Pisciotta JC, Pavlou KN, Cairns MA, Simon SR (1991) Biomechanical gait analysis in obese men. Arch Phys Med Rehabil 72:1065–1070

    PubMed  CAS  Google Scholar 

  • Taylor CR, Heglund NC, McMahon TA, Looney TR (1980) Energetic cost of generating muscular force during running. J Exp Biol 86:9–18

    Google Scholar 

  • Taylor CR, Heglund NC, Maloiy GM (1982) Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol 97:1–21

    PubMed  CAS  Google Scholar 

  • Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60:324–333

    Article  PubMed  Google Scholar 

  • Wagner PD (2006) The oxygen transport system: integration of functions. In: Tipton CM (ed) ACSM’s Advanced Exercise Physiology. Lippincott-Williams and Wilkins, Philadelphia

    Google Scholar 

  • Zoeller RF, Ryan ED, Gordish-Dressman H, Price TB, Seip RL, Angelopoulos TJ, Moyna NM, Gordon PM, Thompson PD, Hoffman EP (2008) Allometric scaling of isometric biceps strength in adult females and the effect of body mass index. Eur J Appl Physiol 104:701–710

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio L. Lafortuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lafortuna, C.L. (2013). Physiological Bases of Physical Limitations During Exercise. In: Capodaglio, P., Faintuch, J., Liuzzi, A. (eds) Disabling Obesity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35972-9_2

Download citation

Publish with us

Policies and ethics