Skip to main content

Extracellular Matrix Remodeling in Zebrafish Development

  • Chapter
  • First Online:
Book cover Extracellular Matrix in Development

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

The importance of extracellular matrix proteins in the development of chick, frog, and mouse embryos has been recognized for decades. Accordingly, with the emergence of zebrafish as a genetic and developmental model system, there has been a steady increase in the number of studies showing developmental roles for matrix proteins, their receptors, and their modifying enzymes. The goal of this chapter is to highlight some of the extracellular matrix and interacting proteins present in the developing zebrafish embryo and discuss examples of morphogenetic processes requiring extracellular matrix protein expression, assembly, and turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablooglu AJ, Kang J, Handin RI, Traver D, Shattil SJ (2007) The zebrafish vitronectin receptor: characterization of integrin alphaV and beta3 expression patterns in early vertebrate development. Dev Dyn 236:2268–2276

    PubMed  CAS  Google Scholar 

  • Ablooglu AJ, Tkachenko E, Kang J, Shattil SJ (2010) Integrin alphaV is necessary for gastrulation movements that regulate vertebrate body asymmetry. Development 137:3449–3458

    PubMed  CAS  Google Scholar 

  • Alexander J, Rothenberg M, Henry GL, Stainier DY (1999) casanova plays an early and essential role in endoderm formation in zebrafish. Dev Biol 215:343–357

    PubMed  CAS  Google Scholar 

  • Arrington CB, Yost HJ (2009) Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 136:3143–3152

    PubMed  CAS  Google Scholar 

  • Baas D, Malbouyres M, Haftek-Terreau Z, Le Guellec D, Ruggiero F (2009) Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biol 28:490–502

    PubMed  CAS  Google Scholar 

  • Barrios A, Poole RJ, Durbin L, Brennan C, Holder N, Wilson SW (2003) Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr Biol 13:1571–1582

    PubMed  CAS  Google Scholar 

  • Bignon M, Pichol-Thievend C, Hardouin J, Malbouyres M, Brechot N, Nasciutti L, Barret A, Teillon J, Guillon E, Etienne E, Caron M, Joubert-Caron R, Monnot C, Ruggiero F, Muller L, Germain S (2011) Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood 118:3979–3989

    PubMed  CAS  Google Scholar 

  • Bingham S, Higashijima S, Okamoto H, Chandrasekhar A (2002) The Zebrafish trilobite gene is essential for tangential migration of branchiomotor neurons. Dev Biol 242:149–160

    PubMed  CAS  Google Scholar 

  • Bingham SM, Sittaramane V, Mapp O, Patil S, Prince VE, Chandrasekhar A (2010) Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain. Dev Neurobiol 70:87–99

    PubMed  CAS  Google Scholar 

  • Boucaut JC, Darribere T (1983) Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation. Cell Tissue Res 234:135–145

    PubMed  CAS  Google Scholar 

  • Bultmann H, Santas AJ, Peters DM (1998) Fibronectin fibrillogenesis involves the heparin II binding domain of fibronectin. J Biol Chem 273:2601–2609

    PubMed  CAS  Google Scholar 

  • Carmignac V, Durbeej M (2012) Cell-matrix interactions in muscle disease. J Pathol 226:200–218

    PubMed  CAS  Google Scholar 

  • Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M (2003) Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 130:4037–4046

    PubMed  CAS  Google Scholar 

  • Chandrasekhar A (2004) Turning heads: development of vertebrate branchiomotor neurons. Dev Dyn 229:143–161

    PubMed  CAS  Google Scholar 

  • Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Nusslein-Volhard C (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123:293–302

    PubMed  CAS  Google Scholar 

  • Chen E, Hermanson S, Ekker SC (2004) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103:1710–1719

    PubMed  CAS  Google Scholar 

  • Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC (2005) A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol 284:364–376

    PubMed  CAS  Google Scholar 

  • Chen E, Larson JD, Ekker SC (2006) Functional analysis of zebrafish microfibril-associated glycoprotein-1 (Magp1) in vivo reveals roles for microfibrils in vascular development and function. Blood 107:4364–4374

    PubMed  CAS  Google Scholar 

  • Christopher RA, Kowalczyk AP, McKeown-Longo PJ (1997) Localization of fibronectin matrix assembly sites on fibroblasts and endothelial cells. J Cell Sci 110(Pt 5):569–581

    PubMed  CAS  Google Scholar 

  • Coyle RC, Latimer A, Jessen JR (2008) Membrane-type 1 matrix metalloproteinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling. Exp Cell Res 314:2150–2162

    PubMed  CAS  Google Scholar 

  • Crawford BD, Henry CA, Clason TA, Becker AL, Hille MB (2003) Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. Mol Biol Cell 14:3065–3081

    PubMed  CAS  Google Scholar 

  • D’Amico LA, Cooper MS (2001) Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dyn 222:611–624

    PubMed  Google Scholar 

  • Dale RM, Topczewski J (2011) Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene. Dev Biol 357:518–531

    PubMed  CAS  Google Scholar 

  • Dallas SL, Chen Q, Sivakumar P (2006) Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Top Dev Biol 75:1–24

    PubMed  CAS  Google Scholar 

  • Danen EH, Sonnenberg A (2003) Integrins in regulation of tissue development and function. J Pathol 201:632–641

    PubMed  CAS  Google Scholar 

  • Davidson LA, Marsden M, Keller R, Desimone DW (2006) Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844

    PubMed  CAS  Google Scholar 

  • De Maziere A, Parker L, Van Dijk S, Ye W, Klumperman J (2008) Egfl7 knockdown causes defects in the extension and junctional arrangements of endothelial cells during zebrafish vasculogenesis. Dev Dyn 237:580–591

    PubMed  Google Scholar 

  • Dickmeis T, Mourrain P, Saint-Etienne L, Fischer N, Aanstad P, Clark M, Strahle U, Rosa F (2001) A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 15:1487–1492

    PubMed  CAS  Google Scholar 

  • Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 138:97–106

    PubMed  CAS  Google Scholar 

  • Eames BF, Singer A, Smith GA, Wood ZA, Yan YL, He X, Polizzi SJ, Catchen JM, Rodriguez-Mari A, Linbo T, Raible DW, Postlethwait JH (2010) UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Dev Biol 341:400–415

    PubMed  CAS  Google Scholar 

  • Eames BF, Yan YL, Swartz ME, Levic DS, Knapik EW, Postlethwait JH, Kimmel CB (2011) Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 7:e1002246

    PubMed  CAS  Google Scholar 

  • Fang W, Friis TE, Long X, Xiao Y (2010) Expression of chondromodulin-1 in the temporomandibular joint condylar cartilage and disc. J Oral Pathol Med 39:356–360

    PubMed  Google Scholar 

  • Flanagan-Steet H, Sias C, Steet R (2009) Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II. Am J Pathol 175:2063–2075

    PubMed  CAS  Google Scholar 

  • Friedrich EB, Liu E, Sinha S, Cook S, Milstone DS, MacRae CA, Mariotti M, Kuhlencordt PJ, Force T, Rosenzweig A, St-Arnaud R, Dedhar S, Gerszten RE (2004) Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol Cell Biol 24:8134–8144

    PubMed  CAS  Google Scholar 

  • Galvez BG, Matias-Roman S, Yanez-Mo M, Sanchez-Madrid F, Arroyo AG (2002) ECM regulates MT1-MMP localization with beta1 or alphavbeta3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J Cell Biol 159:509–521

    PubMed  CAS  Google Scholar 

  • Gansner JM, Gitlin JD (2008) Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation. Dev Dyn 237:3715–3726

    PubMed  CAS  Google Scholar 

  • Gansner JM, Madsen EC, Mecham RP, Gitlin JD (2008) Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn 237:2844–2861

    PubMed  CAS  Google Scholar 

  • Garavito-Aguilar ZV, Riley HE, Yelon D (2010) Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development 137:3215–3220

    PubMed  CAS  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  • Georges-Labouesse EN, George EL, Rayburn H, Hynes RO (1996) Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207:145–156

    PubMed  CAS  Google Scholar 

  • Glickman NS, Yelon D (2002) Cardiac development in zebrafish: coordination of form and function. Semin Cell Dev Biol 13:507–513

    PubMed  Google Scholar 

  • Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124:4309–4319

    PubMed  CAS  Google Scholar 

  • Gonzalo P, Moreno V, Galvez BG, Arroyo AG (2010) MT1-MMP and integrins: Hand-to-hand in cell communication. Biofactors 36:248–254

    PubMed  CAS  Google Scholar 

  • Grant PK, Moens CB (2010) The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain. Neural Dev 5:9

    PubMed  Google Scholar 

  • Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA 104:7092–7097

    PubMed  CAS  Google Scholar 

  • Henry CA, Hall LA, Burr Hille M, Solnica-Krezel L, Cooper MS (2000) Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. Curr Biol 10:1063–1066

    PubMed  CAS  Google Scholar 

  • Henry CA, Crawford BD, Yan YL, Postlethwait J, Cooper MS, Hille MB (2001) Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. Dev Biol 240:474–487

    PubMed  CAS  Google Scholar 

  • Hocking DC, Sottile J, McKeown-Longo PJ (1994) Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J Biol Chem 269:19183–19187

    PubMed  CAS  Google Scholar 

  • Holley SA (2007) The genetics and embryology of zebrafish metamerism. Dev Dyn 236:1422–1449

    PubMed  CAS  Google Scholar 

  • Holtzman NG, Schoenebeck JJ, Tsai HJ, Yelon D (2007) Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development 134:2379–2386

    PubMed  CAS  Google Scholar 

  • Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323

    PubMed  CAS  Google Scholar 

  • Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ (2006) A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 20:2673–2686

    PubMed  CAS  Google Scholar 

  • Huang CC, Wang TC, Lin BH, Wang YW, Johnson SL, Yu J (2009) Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in zebrafish caudal fins. Dev Biol 332:360–370

    PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    PubMed  CAS  Google Scholar 

  • Iida A, Sakaguchi K, Sato K, Sakurai H, Nishimura D, Iwaki A, Takeuchi M, Kobayashi M, Misaki K, Yonemura S, Kawahara A, Sehara-Fujisawa A (2010) Metalloprotease-dependent onset of blood circulation in zebrafish. Curr Biol 20:1110–1116

    PubMed  CAS  Google Scholar 

  • Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL, Currie PD (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development 136:3367–3376

    PubMed  CAS  Google Scholar 

  • Jessen JR, Solnica-Krezel L (2005) Morphogenetic cell movements shaping the zebrafish gastrula. In: Mlodzik M (ed) Planar cell polarization during development. Elsevier, San Diego, pp 131–165

    Google Scholar 

  • Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, Solnica-Krezel L (2002) Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 4:610–615

    PubMed  CAS  Google Scholar 

  • Jiang YJ, Brand M, Heisenberg CP, Beuchle D, Furutani-Seiki M, Kelsh RN, Warga RM, Granato M, Haffter P, Hammerschmidt M, Kane DA, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996) Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123:205–216

    PubMed  CAS  Google Scholar 

  • Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132:5199–5209

    PubMed  CAS  Google Scholar 

  • John N, Cinelli P, Wegner M, Sommer L (2011) Transforming growth factor beta-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 29:689–699

    PubMed  CAS  Google Scholar 

  • Julich D, Geisler R, Holley SA (2005) Integrinalpha5 and delta/notch signaling have complementary spatiotemporal requirements during zebrafish somitogenesis. Dev Cell 8:575–586

    PubMed  Google Scholar 

  • Julich D, Mould AP, Koper E, Holley SA (2009) Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development 136:2913–2921

    PubMed  CAS  Google Scholar 

  • Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    PubMed  CAS  Google Scholar 

  • Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Trinh LA, Reiter JF, Alexander J, Yelon D, Stainier DY (2000) The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev 14:1279–1289

    PubMed  CAS  Google Scholar 

  • Kim HR, Ingham PW (2009) The extracellular matrix protein TGFBI promotes myofibril bundling and muscle fibre growth in the zebrafish embryo. Dev Dyn 238:56–65

    PubMed  CAS  Google Scholar 

  • Klass CM, Couchman JR, Woods A (2000) Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci 113(Pt 3):493–506

    PubMed  CAS  Google Scholar 

  • Knoll R, Postel R, Wang J, Kratzner R, Hennecke G, Vacaru AM, Vakeel P, Schubert C, Murthy K, Rana BK, Kube D, Knoll G, Schafer K, Hayashi T, Holm T, Kimura A, Schork N, Toliat MR, Nurnberg P, Schultheiss HP, Schaper W, Schaper J, Bos E, Den Hertog J, van Eeden FJ, Peters PJ, Hasenfuss G, Chien KR, Bakkers J (2007) Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116:515–525

    PubMed  Google Scholar 

  • Koshida S, Kishimoto Y, Ustumi H, Shimizu T, Furutani-Seiki M, Kondoh H, Takada S (2005) Integrinalpha5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev Cell 8:587–598

    PubMed  CAS  Google Scholar 

  • Kramer KL, Yost HJ (2002) Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2:115–124

    PubMed  CAS  Google Scholar 

  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R (2010) Cranial neural crest migration: new rules for an old road. Dev Biol 344:543–554

    PubMed  CAS  Google Scholar 

  • Kupperman E, An S, Osborne N, Waldron S, Stainier DY (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406:192–195

    PubMed  CAS  Google Scholar 

  • Lang MR, Lapierre LA, Frotscher M, Goldenring JR, Knapik EW (2006) Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat Genet 38:1198–1203

    PubMed  CAS  Google Scholar 

  • Langenbacher AD, Huang J, Chen Y, Chen JN (2012) Sodium pump activity in the yolk syncytial layer regulates zebrafish heart tube morphogenesis. Dev Biol 362:263–270

    PubMed  CAS  Google Scholar 

  • Latimer A, Jessen JR (2010) Extracellular matrix assembly and organization during zebrafish gastrulation. Matrix Biol 29:89–96

    PubMed  CAS  Google Scholar 

  • Lee G, Hynes R, Kirschner M (1984) Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740

    PubMed  CAS  Google Scholar 

  • Li Z, Korzh V, Gong Z (2007) Localized rbp4 expression in the yolk syncytial layer plays a role in yolk cell extension and early liver development. BMC Dev Biol 7:117

    PubMed  Google Scholar 

  • Lin X (2004) Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131:6009–6021

    PubMed  CAS  Google Scholar 

  • Lynch CC, Matrisian LM (2002) Matrix metalloproteinases in tumor-host cell communication. Differentiation 70:561–573

    PubMed  CAS  Google Scholar 

  • Machingo QJ, Fritz A, Shur BD (2006) A beta1,4-galactosyltransferase is required for convergent extension movements in zebrafish. Dev Biol 297:471–482

    PubMed  CAS  Google Scholar 

  • Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond IA (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3:354–365

    PubMed  CAS  Google Scholar 

  • Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    PubMed  CAS  Google Scholar 

  • Mapp OM, Wanner SJ, Rohrschneider MR, Prince VE (2010) Prickle1b mediates interpretation of migratory cues during zebrafish facial branchiomotor neuron migration. Dev Dyn 239:1596–1608

    PubMed  CAS  Google Scholar 

  • Mapp OM, Walsh GS, Moens CB, Tada M, Prince VE (2011) Zebrafish Prickle1b mediates facial branchiomotor neuron migration via a farnesylation-dependent nuclear activity. Development 138:2121–2132

    PubMed  CAS  Google Scholar 

  • Marsden M, DeSimone DW (2003) Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol 13:1182–1191

    PubMed  CAS  Google Scholar 

  • Matsui T, Raya A, Callol-Massot C, Kawakami Y, Oishi I, Rodriguez-Esteban C, Izpisua Belmonte JC (2007) miles-apart-Mediated regulation of cell-fibronectin interaction and myocardial migration in zebrafish. Nat Clin Pract Cardiovasc Med 4(Suppl 1):S77–S82

    PubMed  CAS  Google Scholar 

  • McDonald JA, Quade BJ, Broekelmann TJ, LaChance R, Forsman K, Hasegawa E, Akiyama S (1987) Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J Biol Chem 262:2957–2967

    PubMed  CAS  Google Scholar 

  • Melville DB, Knapik EW (2011) Traffic jams in fish bones: ER-to-Golgi protein transport during zebrafish development. Cell Adh Migr 5:114–118

    PubMed  Google Scholar 

  • Melville DB, Montero-Balaguer M, Levic DS, Bradley K, Smith JR, Hatzopoulos AK, Knapik EW (2011) The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis. Dis Model Mech 4:763–776

    PubMed  CAS  Google Scholar 

  • Mendelsohn BA, Yin C, Johnson SL, Wilm TP, Solnica-Krezel L, Gitlin JD (2006) Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metab 4:155–162

    PubMed  CAS  Google Scholar 

  • Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B (2003) Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci USA 100:9360–9365

    PubMed  CAS  Google Scholar 

  • Moro E, Tomanin R, Friso A, Modena N, Tiso N, Scarpa M, Argenton F (2010) A novel functional role of iduronate-2-sulfatase in zebrafish early development. Matrix Biol 29:43–50

    PubMed  CAS  Google Scholar 

  • Mostacciuolo ML, Miorin M, Martinello F, Angelini C, Perini P, Trevisan CP (1996) Genetic epidemiology of congenital muscular dystrophy in a sample from north-east Italy. Hum Genet 97:277–279

    PubMed  CAS  Google Scholar 

  • Mould AP, McLeish JA, Huxley-Jones J, Goonesinghe AC, Hurlstone AF, Boot-Handford RP, Humphries MJ (2006) Identification of multiple integrin beta1 homologs in zebrafish (Danio rerio). BMC Cell Biol 7:24

    PubMed  Google Scholar 

  • Mould AP, Koper EJ, Byron A, Zahn G, Humphries MJ (2009) Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem J 424:179–189

    PubMed  CAS  Google Scholar 

  • Mundell NA, Labosky PA (2011) Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development 138:641–652

    PubMed  CAS  Google Scholar 

  • Nair S, Schilling TF (2008) Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322:89–92

    PubMed  CAS  Google Scholar 

  • Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H, Holtzman NG, Yelon D, Stainier DY (2008) The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 18:1882–1888

    PubMed  CAS  Google Scholar 

  • Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier DY, De Sauvage FJ, Ye W (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428:754–758

    PubMed  CAS  Google Scholar 

  • Parsons MJ, Pollard SM, Saude L, Feldman B, Coutinho P, Hirst EM, Stemple DL (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development 129:3137–3146

    PubMed  CAS  Google Scholar 

  • Paulus JD, Halloran MC (2006) Zebrafish bashful/laminin-alpha 1 mutants exhibit multiple axon guidance defects. Dev Dyn 235:213–224

    PubMed  CAS  Google Scholar 

  • Petrey AC, Flanagan-Steet H, Johnson S, Fan X, De la Rosa M, Haskins ME, Nairn AV, Moremen KW, Steet R (2012) Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II. Dis Model Mech 5:177–190

    PubMed  CAS  Google Scholar 

  • Pollard SM, Parsons MJ, Kamei M, Kettleborough RN, Thomas KA, Pham VN, Bae MK, Scott A, Weinstein BM, Stemple DL (2006) Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol 289:64–76

    PubMed  CAS  Google Scholar 

  • Postel R, Vakeel P, Topczewski J, Knoll R, Bakkers J (2008) Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex. Dev Biol 318:92–101

    PubMed  CAS  Google Scholar 

  • Rauch GJ, Lyons DA, Middendorf I, Friedlander B, Arana N, Reyes T, Talbot WS (2003) Submission and curation of gene expression data. ZFIN direct data submission. http://zfin.org

  • Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DY (1999) Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13:2983–2995

    PubMed  CAS  Google Scholar 

  • Reiter JF, Kikuchi Y, Stainier DY (2001) Multiple roles for Gata5 in zebrafish endoderm formation. Development 128:125–135

    PubMed  CAS  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978

    PubMed  Google Scholar 

  • Rohr S, Bit-Avragim N, Abdelilah-Seyfried S (2006) Heart and soul/PRKCi and nagie oko/Mpp 5 regulate myocardial coherence and remodeling during cardiac morphogenesis. Development 133:107–115

    PubMed  CAS  Google Scholar 

  • Rohrschneider MR, Elsen GE, Prince VE (2007) Zebrafish Hoxb1a regulates multiple downstream genes including prickle1b. Dev Biol 309:358–372

    PubMed  CAS  Google Scholar 

  • Rozanov DV, Deryugina EI, Ratnikov BI, Monosov EZ, Marchenko GN, Quigley JP, Strongin AY (2001) Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J Biol Chem 276:25705–25714

    PubMed  CAS  Google Scholar 

  • Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW (2009) The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol 327:386–398

    PubMed  CAS  Google Scholar 

  • Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779

    PubMed  CAS  Google Scholar 

  • Sakaguchi T, Kikuchi Y, Kuroiwa A, Takeda H, Stainier DY (2006) The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 133:4063–4072

    PubMed  CAS  Google Scholar 

  • Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW (2010) Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS One 5:e10367

    PubMed  Google Scholar 

  • Schoenebeck JJ, Yelon D (2007) Illuminating cardiac development: advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 18:27–35

    PubMed  CAS  Google Scholar 

  • Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–E68

    PubMed  CAS  Google Scholar 

  • Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3:a005041

    PubMed  Google Scholar 

  • Schwarzbauer JE, Sechler JL (1999) Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr Opin Cell Biol 11:622–627

    PubMed  CAS  Google Scholar 

  • Sittaramane V, Sawant A, Wolman MA, Maves L, Halloran MC, Chandrasekhar A (2009) The cell adhesion molecule Tag1, transmembrane protein Stbm/Vangl2, and Lamininalpha1 exhibit genetic interactions during migration of facial branchiomotor neurons in zebrafish. Dev Biol 325:363–373

    PubMed  CAS  Google Scholar 

  • Skarie JM, Link BA (2009) FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Invest Ophthalmol Vis Sci 50:5026–5034

    PubMed  Google Scholar 

  • Skoglund P, Keller R (2010) Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan. Curr Opin Cell Biol 22:589–596

    PubMed  CAS  Google Scholar 

  • Snow CJ, Peterson MT, Khalil A, Henry CA (2008) Muscle development is disrupted in zebrafish embryos deficient for fibronectin. Dev Dyn 237:2542–2553

    PubMed  Google Scholar 

  • Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228

    PubMed  CAS  Google Scholar 

  • Solnica-Krezel L, Stemple DL, Mountcastle-Shah E, Rangini Z, Neuhauss SC, Malicki J, Schier AF, Stainier DY, Zwartkruis F, Abdelilah S, Driever W (1996) Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123:67–80

    PubMed  CAS  Google Scholar 

  • Spokony RF, Aoki Y, Saint-Germain N, Magner-Fink E, Saint-Jeannet JP (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129:421–432

    PubMed  CAS  Google Scholar 

  • Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2:39–48

    PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    PubMed  CAS  Google Scholar 

  • Sun L, Zou Z, Collodi P, Xu F, Xu X, Zhao Q (2005) Identification and characterization of a second fibronectin gene in zebrafish. Matrix Biol 24:69–77

    PubMed  Google Scholar 

  • Sztal T, Berger S, Currie PD, Hall TE (2011) Characterization of the laminin gene family and evolution in zebrafish. Dev Dyn 240:422–431

    PubMed  CAS  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390

    PubMed  CAS  Google Scholar 

  • Thisse B, Pflumio S, Furthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. ZFIN direct data submission. http://zfin.org

  • Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, Kirchner J, Parkhill JP, Thisse C (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77:505–519

    PubMed  CAS  Google Scholar 

  • Torres-Vazquez J, Gitler AD, Fraser SD, Berk JD, Van NP, Fishman MC, Childs S, Epstein JA, Weinstein BM (2004) Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 7:117–123

    PubMed  CAS  Google Scholar 

  • Townley AK, Feng Y, Schmidt K, Carter DA, Porter R, Verkade P, Stephens DJ (2008) Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 121:3025–3034

    PubMed  CAS  Google Scholar 

  • Trinh LA, Stainier DY (2004) Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell 6:371–382

    PubMed  CAS  Google Scholar 

  • Trinh LA, Yelon D, Stainier DY (2005) Hand2 regulates epithelial formation during myocardial diferentiation. Curr Biol 15:441–446

    PubMed  Google Scholar 

  • van Goor H, Melenhorst WB, Turner AJ, Holgate ST (2009) Adamalysins in biology and disease. J Pathol 219:277–286

    PubMed  Google Scholar 

  • Wada H, Iwasaki M, Sato T, Masai I, Nishiwaki Y, Tanaka H, Sato A, Nojima Y, Okamoto H (2005) Dual roles of zygotic and maternal Scribble1 in neural migration and convergent extension movements in zebrafish embryos. Development 132:2273–2285

    PubMed  CAS  Google Scholar 

  • Wada H, Tanaka H, Nakayama S, Iwasaki M, Okamoto H (2006) Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain. Development 133:4749–4759

    PubMed  CAS  Google Scholar 

  • Walsh GS, Grant PK, Morgan JA, Moens CB (2011) Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration. Development 138:3033–3042

    PubMed  CAS  Google Scholar 

  • Warga RM, Nusslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development 126:827–838

    PubMed  CAS  Google Scholar 

  • Weinstein BM, Lawson ND (2002) Arteries, veins, Notch, and VEGF. Cold Spring Harb Symp Quant Biol 67:155–162

    PubMed  CAS  Google Scholar 

  • Williams BB, Cantrell VA, Mundell NA, Bennett AC, Quick RE, Jessen JR (2012) VANGL2 regulates membrane trafficking of MMP14 to control cell polarity and migration. J Cell Sci 125(Pt 9):2141–7

    PubMed  CAS  Google Scholar 

  • Wiweger MI, Avramut CM, de Andrea CE, Prins FA, Koster AJ, Ravelli RB, Hogendoorn PC (2011) Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders. J Pathol 223:531–542

    PubMed  Google Scholar 

  • Wyatt RA, Keow JY, Harris ND, Hache CA, Li DH, Crawford BD (2009) The zebrafish embryo: a powerful model system for investigating matrix remodeling. Zebrafish 6:347–354

    PubMed  CAS  Google Scholar 

  • Xiao T, Baier H (2007) Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat Neurosci 10:1529–1537

    PubMed  CAS  Google Scholar 

  • Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, Draper B, Willoughby J, Morcos PA, Amsterdam A, Chung BC, Westerfield M, Haffter P, Hopkins N, Kimmel C, Postlethwait JH (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development 129:5065–5079

    PubMed  CAS  Google Scholar 

  • Yang JT, Bader BL, Kreidberg JA, Ullman-Cullere M, Trevithick JE, Hynes RO (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215:264–277

    PubMed  CAS  Google Scholar 

  • Yeh LK, Liu CY, Kao WW, Huang CJ, Hu FR, Chien CL, Wang IJ (2010) Knockdown of zebrafish lumican gene (zlum) causes scleral thinning and increased size of scleral coats. J Biol Chem 285:28141–28155

    PubMed  CAS  Google Scholar 

  • Yelon D, Ticho B, Halpern ME, Ruvinsky I, Ho RK, Silver LM, Stainier DY (2000) The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127:2573–2582

    PubMed  CAS  Google Scholar 

  • Yin C, Kikuchi K, Hochgreb T, Poss KD, Stainier DY (2010) Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish. Dev Cell 18:973–984

    PubMed  CAS  Google Scholar 

  • Yoong S, O’Connell B, Soanes A, Crowhurst MO, Lieschke GJ, Ward AC (2007) Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expr Patterns 7:39–46

    PubMed  CAS  Google Scholar 

  • Zamir EA, Rongish BJ, Little CD (2008) The ECM moves during primitive streak formation– computation of ECM versus cellular motion. PLoS Biol 6:e247

    PubMed  Google Scholar 

  • Zarbock A, Rossaint J (2011) Regulating inflammation: ADAM8–a new player in the game. Eur J Immunol 41:3419–3422

    PubMed  CAS  Google Scholar 

  • Zhang J, Bai S, Zhang X, Nagase H, Sarras MP Jr (2003a) The expression of gelatinase A (MMP-2) is required for normal development of zebrafish embryos. Dev Genes Evol 213:456–463

    PubMed  CAS  Google Scholar 

  • Zhang J, Bai S, Zhang X, Nagase H, Sarras MP Jr (2003b) The expression of novel membrane-type matrix metalloproteinase isoforms is required for normal development of zebrafish embryos. Matrix Biol 22:279–293

    PubMed  Google Scholar 

  • Zhang Y, Bai XT, Zhu KY, Jin Y, Deng M, Le HY, Fu YF, Chen Y, Zhu J, Look AT, Kanki J, Chen Z, Chen SJ, Liu TX (2008) In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase 13 signaling in response to acute injury. J Immunol 181:2155–2164

    PubMed  CAS  Google Scholar 

  • Zhao Q, Liu X, Collodi P (2001) Identification and characterization of a novel fibronectin in zebrafish. Exp Cell Res 268:211–219

    PubMed  CAS  Google Scholar 

  • Zoeller JJ, Pimtong W, Corby H, Goldoni S, Iozzo AE, Owens RT, Ho SY, Iozzo RV (2009) A central role for decorin during vertebrate convergent extension. J Biol Chem 284:11728–11737

    PubMed  CAS  Google Scholar 

  • Zucker S, Pei D, Cao J, Lopez-Otin C (2003) Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 54:1–74

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those colleagues whose work was not discussed due to space constraints. Research in the Jessen lab on matrix metalloproteinases, the extracellular matrix, and zebrafish gastrulation is supported by grants from ACS (RSG 0928101) and NSF (IOS 0950849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Jessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mundell, N.A., Jessen, J.R. (2013). Extracellular Matrix Remodeling in Zebrafish Development. In: DeSimone, D., Mecham, R. (eds) Extracellular Matrix in Development. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35935-4_8

Download citation

Publish with us

Policies and ethics