Skip to main content

Worst Case Analysis of Non-local Games

  • Conference paper
SOFSEM 2013: Theory and Practice of Computer Science (SOFSEM 2013)

Abstract

Non-local games are studied in quantum information because they provide a simple way for proving the difference between the classical world and the quantum world. A non-local game is a cooperative game played by 2 or more players against a referee. The players cannot communicate but may share common random bits or a common quantum state. A referee sends an input x i to the i th player who then responds by sending an answer a i to the referee. The players win if the answers a i satisfy a condition that may depend on the inputs x i .

Typically, non-local games are studied in a framework where the referee picks the inputs from a known probability distribution. We initiate the study of non-local games in a worst-case scenario when the referee’s probability distribution is unknown and study several non-local games in this scenario.

Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044 and FP7 FET-Open project QCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Physical Review Letters 98, 230501 (2007)

    Article  Google Scholar 

  2. Almeida, M.L., Bancal, J.-D., Brunner, N., Acin, A., Gisin, N., Pironio, S.: Guess your neighbour’s input: a multipartite non-local game with no quantum advantage. Physical Review Letters 104, 230404 (2010)

    Article  Google Scholar 

  3. Ambainis, A., Backurs, A., Balodis, K., Skuskovniks, A., Smotrovs, J., Virza, M.: Worst case analysis of non-local games

    Google Scholar 

  4. Ambainis, A., Kravchenko, D., Nahimovs, N., Rivosh, A.: Nonlocal Quantum XOR Games for Large Number of Players. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 72–83. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Physical Review A 46, 5375–5378 (1992)

    Article  MathSciNet  Google Scholar 

  6. Aravind, P.K.: The magic squares and Bell’s theorem (2002) (manuscript)

    Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984)

    Google Scholar 

  8. Briet, J., Vidick, T.: Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Google Scholar 

  9. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-Optimal and Explicit Bell Inequality Violations. In: Proceedings of CCC 2011, pp. 157–166 (2011)

    Google Scholar 

  10. Cirelson, B. (Tsirelson): Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics 4, 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  11. Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Physical Review Letters 23, 880 (1969)

    Article  Google Scholar 

  12. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of CCC 2004, pp. 236–249 (2004)

    Google Scholar 

  13. Gavoille, C., Kosowski, A., Markiewicz, M.: What Can Be Observed Locally? In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 243–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Kempe, J., Kobayashi, H., Matsumoto, K., Toner, B., Vidick, T.: Entangled Games are Hard to Approximate. In: Proceedings of FOCS 2008, pp. 447–456 (2008)

    Google Scholar 

  15. Merminm, D.: Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States. Physical Review Letters 65, 15 (1990)

    Google Scholar 

  16. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: FOCS 1994, pp. 124–134 (1994)

    Google Scholar 

  17. Silman, J., Chailloux, A., Aharon, N., Kerenidis, I., Pironio, S., Massar, S.: Fully distrustful quantum cryptography. Physical Review Letters 106, 220501 (2011)

    Article  Google Scholar 

  18. Simon, D.R.: On the power of quantum computation. In: Proceedings of FOCS 1994, pp. 116–123. IEEE (1994)

    Google Scholar 

  19. Werner, R.F., Wolf, M.M.: Bell inequalities and Entanglement. Quantum Information and Computation 1(3), 1–25 (2001)

    MathSciNet  MATH  Google Scholar 

  20. de Wolf, R.: Quantum Communication and Complexity. Theoretical Computer Science 287(1), 337–353 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 222–227 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A., Bačkurs, A., Balodis, K., Škuškovniks, A., Smotrovs, J., Virza, M. (2013). Worst Case Analysis of Non-local Games. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds) SOFSEM 2013: Theory and Practice of Computer Science. SOFSEM 2013. Lecture Notes in Computer Science, vol 7741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35843-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35843-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35842-5

  • Online ISBN: 978-3-642-35843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics