Skip to main content

Fabricating Spatially-Varying Subsurface Scattering

  • Chapter
  • First Online:
Material Appearance Modeling: A Data-Coherent Approach

Abstract

Many real world surfaces exhibit translucent appearance due to subsurface scattering. Although various methods exist to measure, edit and render subsurface scattering effects, few solutions exist for manufacturing physical objects with desired translucent appearance. In this chapter, a complete solution is presented for fabricating a material volume with a desired surface BSSRDF. Layers are stacked from a fixed set of manufacturing materials whose thickness is varied spatially to reproduce the heterogeneity of the input BSSRDF. Given an input BSSRDF and the optical properties of the manufacturing materials, the system efficiently determines the optimal order and thickness of the layers. This approach is demonstrated by printing a variety of homogeneous and heterogeneous BSSRDFs using two hardware setups: a milling machine and a 3D printer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H.P.A., Pellacini, F., Rusinkiewicz, S.: Printing spatially-varying reflectance. ACM Trans. Graph. 28(3), 128 (2009)

    Google Scholar 

  2. Weyrich, T., Peers, P., Matusik, W., Rusinkiewicz, S.: Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28(3), 1 (2009)

    Article  Google Scholar 

  3. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., Rusinkiewicz, S.M.: Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29(3) (2010)

    Google Scholar 

  4. Song, Y., Tong, X., Pellacini, F., Peers, P.: SubEdit: a representation for editing measured heterogeneous subsurface scattering. ACM Trans. Graph. 28(3), 31 (2009)

    Article  Google Scholar 

  5. Baumgart, B.G.: Winged edge polyhedron representation. Technical report, Stanford, CA, USA (1972)

    Google Scholar 

  6. Vilbrandt, T., Malone, E.H.L., Pasko, A.: Universal desktop fabrication. In: Heterogeneous Objects Modelling and Applications, pp. 259–284 (2008)

    Chapter  Google Scholar 

  7. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: DISCO: acquisition of translucent objects. ACM Trans. Graph. 23(3), 835–844 (2004)

    Article  Google Scholar 

  8. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25(3), 746–753 (2006)

    Article  Google Scholar 

  9. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.-Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 9 (2008)

    Google Scholar 

  10. Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005)

    Article  Google Scholar 

  11. Mount, D., Arya, S.: Ann: A library for approximate nearest neighbor searching. In: 2nd CGC Workshop on Computational Geometry (1997)

    Google Scholar 

  12. Ishimaru, A.: Wave Propagation and Scattering in Random Media. IEEE Press Series on Electromagnetic Wave Theory (1999)

    Google Scholar 

  13. Arbree, A.: Scalable and heterogeneous rendering of subsurface scattering materials. PhD thesis, Cornell University, Ithaca, New York (2009). http://hdl.handle.net/1813/13986

  14. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: SIGGRAPH, pp. 511–518 (2001)

    Google Scholar 

  15. Press, W.H., et al.: Numerical Recipes in C, 2nd edn. (1992)

    MATH  Google Scholar 

  16. Stam, J.: Multiple scattering as a diffusion process. In: Eur. Rendering Workshop, June 1995, pp. 41–50 (1995)

    Google Scholar 

  17. Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps. ACM Trans. Graph. 24(3), 626–633 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y., Lin, S., Guo, B. (2013). Fabricating Spatially-Varying Subsurface Scattering. In: Material Appearance Modeling: A Data-Coherent Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35777-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35777-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35776-3

  • Online ISBN: 978-3-642-35777-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics