Skip to main content

Case/Control Prediction from Illumina Methylation Microarray’s β and Two-Color Channels in the Presence of Batch Effects

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2011)

Abstract

Among the published studies that submitted Illumina BeadArray 27k methylation datasets to the Gene Expression Omnibus (GEO), more than nine out of ten analyse β, thus making β a de facto standard. Further, as β combines the two color channels M and U into the ratio M/(M + U), we also assume, maybe naively, that β conveys more biologically relevant information than a single color taken alone. As well, a fourth of the GEO studies do not report any analysis step to cancel for non-biological variation. Here, we farther assess the validity of β as a micro array methylation analysis measure by testing empirically whether β predicts more accurately the case/control status than the two color channels taken independently. In addition, we consider whether cancelling the non-biological effects due to the genotyping protocol influences the prediction accuracy. Our results show that M alone predicts better than β and U, interpreting that U’s low prediction impacts negatively the one of β. We also confirm that without proper batch effect cancellation, non-biological variance hides the biological signal, making impractical the prediction of case status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraga, M.F., Ballestar, E., Paz, M.F., Ropero, S., Setien, F., Ballestar, M.L., Heine-Suñer, D., Cigudosa, J.C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T.D., Wu, Y.-Z., Plass, C., Esteller, M.: Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America 102, 10604–10609 (2005)

    Article  Google Scholar 

  2. Wikipedia. Epigenetics (2011) (online accessed April 14, 2011)

    Google Scholar 

  3. Wood, A.J., Oakey, R.J.: Genomic imprinting in mammals: emerging themes and established theories. PLoS Genetics 2, e147 (2006)

    Article  Google Scholar 

  4. Jones, P.A., Laird, P.W.: Cancer epigenetics comes of age. Nature Genetics 21, 163–167 (1999)

    Article  Google Scholar 

  5. Feinberg, A.P., Tycko, B.: The history of cancer epigenetics. Nature Reviews. Cancer 4, 143–153 (2004)

    Article  Google Scholar 

  6. Pembrey, M.E., Bygren, L.O., Kaati, G., Edvinsson, S., Northstone, K., Sjöström, M., Golding, J.: Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics: EJHG 14, 159–166 (2006)

    Article  Google Scholar 

  7. Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E.W., Wu, B., Doucet, D., Thomas, N.J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D.L., Chee, M.S., Floros, J., Fan, J.-B.: High-throughput dna methylation profiling using universal bead arrays. Genome Research 16, 383–393 (2006)

    Article  Google Scholar 

  8. Weisenberger, D., Van Den Berg, D., Pan, F., Berman, B., Laird, P.W.: Comprehensive dna methylation analysis on the illumina infinium assay platform (2008)

    Google Scholar 

  9. Edgar, R., Domrachev, M., Lash, A.E.: Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Research 30, 207–210 (2002)

    Article  Google Scholar 

  10. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muertter, R.N., Holko, M., Ayanbule, O., Yefanov, A., Soboleva, A.: Ncbi geo: archive for functional genomics data sets–10 years on. Nucleic Acids Research 39, D1005–D1010 (2011)

    Article  Google Scholar 

  11. Cleveland, W.S.: LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression. The American Statistician 35(1) (1981)

    Google Scholar 

  12. Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)

    Article  Google Scholar 

  13. Laird, P.W.: Principles and challenges of genome-wide dna methylation analysis. Nature Reviews. Genetics 11, 191–203 (2010)

    Article  Google Scholar 

  14. Teschendorff, A.E., Menon, U., Gentry-Maharaj, A., Ramus, S.J., Weisenberger, D.J., Shen, H., Campan, M., Noushmehr, H., Bell, C.G., Maxwell, P., Savage, D.A., Mueller-Holzner, E., Marth, C., Kocjan, G., Gayther, S.A., Jones, A., Beck, S., Wagner, W., Laird, P.W., Jacobs, I.J., Widschwendter, M.: Age-dependent dna methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research 20, 440–446 (2010)

    Article  Google Scholar 

  15. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010) ISBN 3-900051-07-0

    Google Scholar 

  16. Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5(10), R80 (2004)

    Google Scholar 

  17. Evan Johnson, W., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 8, 118–127 (2007)

    Article  Google Scholar 

  18. Langfelder, P., Horvath, S.: Wgcna: an r package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008)

    Article  Google Scholar 

  19. Oldham, M., Langfelder, P., Horvath, S.: Network methods for describing sample relationships in genomic datasets: application to Huntington’s disease. BMC Systems Biology 6(1), 63 (2012), http://www.biomedcentral.com/1752-0509/6/63 , doi:10.1186/1752-0509-6-63

    Article  Google Scholar 

  20. Du, P., Kibbe, W.A., Lin, S.M.: Lumi: a pipeline for processing illumina microarray. Bioinformatics 24, 1547–1548 (2008)

    Article  Google Scholar 

  21. Carey, V., Gentleman, R., Mar, J., contributions from Vertrees, J.: MLInterfaces: Uniform interfaces to R machine learning procedures for data in Bioconductor containers. R package version 1.30.0

    Google Scholar 

  22. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, R package version 1.5-24 (2010)

    Google Scholar 

  23. Illumina. Normalization and Differential Analysis (2008)

    Google Scholar 

  24. Vapnik, V.N.: The Nature of Statistical Theory. In: Information Science and Statistics. Springer (1995)

    Google Scholar 

  25. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001)

    Google Scholar 

  26. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Du, P., Zhang, X., Huang, C.-C., Jafari, N., Kibbe, W.A., Hou, L., Lin, S.M.: Comparison of beta-value and m-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11, 587 (2010)

    Article  Google Scholar 

  28. Liu, J., Zhang, Z., Bando, M., Itoh, T., Deardorff, M.A., Li, J.R., Clark, D., Kaur, M., Tatsuro, K., Kline, A.D., Chang, C., Vega, H., Jackson, L.G., Spinner, N.B., Shirahige, K., Krantz, I.D.: Genome-wide dna methylation analysis in cohesin mutant human cell lines. Nucleic Acids Research 38, 5657–5671 (2010)

    Article  Google Scholar 

  29. Fang, F., Turcan, S., Rimner, A., Kaufman, A., Giri, D., Morris, L.T., Shen, R., Seshan, V., Mo, Q., Heguy, A., Baylin, S.B., Ahuja, N., Viale, A., Massague, J., Norton, L., Vahdat, L.T., Moynahan, M.E., Chan, T.A.: Breast cancer methylomes establish an epigenomic foundation for metastasis. Science Translational Medicine 3, 75ra25 (2011)

    Google Scholar 

  30. Boks, M.P., Derks, E.M., Weisenberger, D.J., Strengman, E., Janson, E., Sommer, I.E., Kahn, R.S., Ophoff, R.A.: The relationship of dna methylation with age, gender and genotype in twins and healthy controls. PLoS One 4(8), 6767 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colas, F., Houwing-Duistermaat, J.J. (2012). Case/Control Prediction from Illumina Methylation Microarray’s β and Two-Color Channels in the Presence of Batch Effects. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35686-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35685-8

  • Online ISBN: 978-3-642-35686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics