Skip to main content

Self-similarity in Physiological Time Series: New Perspectives from the Temporal Spectrum of Scale Exponents

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7548))

Abstract

Most physiological time series have self-similar properties which reflect the functioning of physiological control mechanisms. Self-similarity is usually assessed by detrended fluctuation analysis (DFA) assuming that mono- or bi-fractal models generate the self-similar dynamics. Our group recently proposed a new DFA approach describing self-similarity as a continuous temporal spectrum of coefficients, thus not assuming that “lumped-parameter” fractal models generate the data. This paper reviews the rationale for calculating a spectrum of DFA coefficients and applies this method on datasets of signals whose self-similarity has been extensively studied in the past. The first dataset consists of six electroencephalographic (EEG) derivations collected in a healthy volunteer. The second dataset consists of cardiac intervals and diastolic blood pressures recorded in 60 volunteers at different levels of cardiac sympatho/vagal balance. Results reveal the limits of the traditional “lumped-parameter” approach, and provide information on the role of autonomic outflows in determining cardiovascular self-similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberger, A.L.: Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347(9011), 1312–1314 (1996)

    Article  Google Scholar 

  2. Hurst, H.E.: Long Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers 116, 770–799 (1951)

    Google Scholar 

  3. Feller, W.: The Asymptotic Distribution of the Range of Sums of Independent Random Variables. The Annals of Mathematical Statistics 22(3), 427–432 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mandelbrot, B.B., Wallis, J.R.: Some Long-Run Properties of Geophysical Records. Water Resour. Res. 5, 321–340 (1969)

    Article  Google Scholar 

  5. Eke, A., Herman, P., Bassingthwaighte, J.B., Raymond, G.M., Percival, D.B., Cannon, M., Balla, I., Ikrenyi, C.: Physiological time series: distinguishing fractal noises from motions. Pflugers Arch. 439, 403–415 (2000)

    Article  Google Scholar 

  6. Eke, A., Herman, P., Kocsis, L., Kozak, L.R.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23, R1–R38 (2002)

    Article  Google Scholar 

  7. Castiglioni, P., Parati, G., Civijian, A., Quintin, L., Di Rienzo, M.: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging. IEEE Trans. Biomed. Eng. 56, 675–684 (2009)

    Article  Google Scholar 

  8. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E. Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics 49, 1685–1689 (1994)

    Article  Google Scholar 

  9. Tulppo, M.P., Kiviniemi, A.M., Hautala, A.J., Kallio, M., Seppanen, T., Makikallio, T.H., Huikuri, H.V.: Physiological background of the loss of fractal heart rate dynamics. Circulation 112, 314–319 (2005)

    Article  Google Scholar 

  10. Schulz, S., Koschke, M., Bar, K.J., Voss, A.: The altered complexity of cardiovascular regulation in depressed patients. Physiol. Meas. 31, 303–321 (2010)

    Article  Google Scholar 

  11. Busha, B.F.: Exercise modulation of cardiorespiratory variability in humans. Respir. Physiol. Neurobiol. 172, 72–80 (2010)

    Article  Google Scholar 

  12. Abasolo, D., Hornero, R., Escudero, J., Espino, P.: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55, 2171–2179 (2008)

    Article  Google Scholar 

  13. Chang, S., Hsyu, M.C., Cheng, H.Y., Hsieh, S.H., Lin, C.: Synergic co-activation in forearm pronation. Ann. Biomed. Eng. 36, 2002–2018 (2008)

    Article  Google Scholar 

  14. Hausdorff, J.M.: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26, 555–589 (2007)

    Article  Google Scholar 

  15. Ferree, T.C., Hwa, R.C.: Power-law scaling in human EEG: relation to Fourier power spectrum. Neurocomputing 52-54, 755–761 (2003)

    Article  Google Scholar 

  16. Abasolo, D., Hornero, R., Escudero, J., Espino, P.: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55, 2171–2179 (2008)

    Article  Google Scholar 

  17. Jospin, M., Caminal, P., Jensen, E.W., Litvan, H., Vallverdu, M., Struys, M.M., Vereecke, H.E., Kaplan, D.T.: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans. Biomed. Eng. 54, 840–846 (2007)

    Article  Google Scholar 

  18. Castiglioni, P., Pugnetti, L., Garegnani, M., Mailland, E., Carabalona, R.: On the self-affinity of the electroencephalogram: evaluation of a whole spectrum of scale coefficients by detrended fluctuations analysis. In: Dössel, O., Schlegel, W.C. (eds.) WC 2009, 4th edn. IFMBE Proceedings, vol. 25, pp. 651–654 (2009)

    Google Scholar 

  19. Peng, C.K., Havlin, S., Hausdorff, J.M., Mietus, J.E., Stanley, H.E., Goldberger, A.L.: Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J. Electrocardiol. 28, 59–65 (1995)

    Article  Google Scholar 

  20. Absil, P., Sepulchre, R., Bilge, A., Gérard, P.: Nonlinear analysis of cardiac rhythm fluctuations using DFA method. Physica A: Statistical Mechanics and its Applications 272, 235–244 (1999)

    Article  Google Scholar 

  21. Lombardi, F., Sandrone, G., Mortara, A., Torzillo, D., La Rovere, M.T., Signorini, M.G., Cerutti, S., Malliani, A.: Linear and nonlinear dynamics of heart rate variability after acute myocardial infarction with normal and reduced left ventricular ejection fraction. Am. J. Cardiol. 77, 1283–1288 (1996)

    Article  Google Scholar 

  22. Makikallio, T.H., Hoiber, S., Kober, L., Torp-Pedersen, C., Peng, C.K., Goldberger, A.L., Huikuri, H.V.: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation. Am. J. Cardiol. 83, 836–839 (1999)

    Article  Google Scholar 

  23. Huikuri, H.V., Makikallio, T.H., Peng, C.K., Goldberger, A.L., Hintze, U., Moller, M.: Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47–53 (2000)

    Article  Google Scholar 

  24. Schulz, S., Koschke, M., Bar, K.J., Voss, A.: The altered complexity of cardiovascular regulation in depressed patients. Physiol. Meas. 31, 303–321 (2010)

    Article  Google Scholar 

  25. Castiglioni, P., Parati, G., Di Rienzo, M., Carabalona, R., Cividjian, A., Quintin, L.: Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J. Physiol. 589, 355–369 (2011)

    Article  Google Scholar 

  26. Berger, R.D., Saul, J.P., Cohen, R.J.: Transfer function analysis of autonomic regulation. Am. J Physiol. 256, H142–H152 (1989)

    Google Scholar 

  27. Levy, M.N., Yang, T., Wallick, D.W.: Assessment of beat-by-beat control of heart rate by the autonomic nervous system: molecular biology technique are necessary, but not sufficient. J. Cardiovasc. Electrophysiol. 4, 183–193 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castiglioni, P. (2012). Self-similarity in Physiological Time Series: New Perspectives from the Temporal Spectrum of Scale Exponents. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35686-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35685-8

  • Online ISBN: 978-3-642-35686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics