Skip to main content

Bone Tumors

  • Chapter
  • First Online:
  • 2222 Accesses

Abstract

In old patients metastases are by far the most frequent lesion. Their detection must be planned carefully and only when the knowledge that is obtained will have therapeutic consequences. Bone scintigraphy, radiographs, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) all have specific uses and indications. The treatment of some primary bone tumors has been completely transformed by chemotherapy but mainly in young patients. At the same time, surgery has changed and drastic measures, such as amputation, are much rarer. The perfect local staging allows the best choice of indications as well as evaluation of neoadjuvant treatment. Plain film remains the first indispensable diagnostic step, especially for primary tumors. CT improves diagnostic capability, and MRI is the best technique for local staging. PET can evaluate new criteria, but it is still being evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CT:

Computed tomography

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

STIR:

Short tau inversion recovery

References

  • Abrams HL, Spiro R, Goldstein N (1950) Metastases in carcinoma. Analysis of 1000 autopsied cases. Cancer 2:74–85

    Article  Google Scholar 

  • Aisen AM, Martel W, Braunstein EM, McMilin KI, Philips WA, Kling TF (1986) MRI and CT evaluation of primary bone and soft tissue tumors. AJR Am J Roentgenol 146:749–756

    Article  PubMed  CAS  Google Scholar 

  • Algra PR, Bloem JL, Tissing H et al (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11:219–232

    PubMed  CAS  Google Scholar 

  • Baur A, Stabler A, Bruning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    PubMed  CAS  Google Scholar 

  • Baur A, Stäbler A, Nagel D, Lamerz R, Bartl R, Hiller E, Wendtner C, Bachner F, Reiser M (2002a) Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 95(6):1334–1345

    Article  PubMed  Google Scholar 

  • Baur A, Dietrich O, Reiser M (2002b) Diffusion-weighted imaging of the spinal column. Neuroimaging Clin N Am 12(1):147–160

    Article  PubMed  Google Scholar 

  • Bloem JL, Taminiau AHM, Eulderink F, Hermans J, Pauwels EKJ (1988) Radiologic staging of primary bone sarcoma. MRI, scintigraphy, angiography and CT correlated with pathologic examination. Radiology 169:805–810

    PubMed  CAS  Google Scholar 

  • Boccardo F, Bruzzi P, Cionini L et al (1995) Appro­priateness of the use of clinical and radiologic ­examinations and laboratory tests in the follow-up of surgically-treated breast cancer patients. Results of the Working Group on the Clinical Aspects of Follow-up. Ann Oncol 6(Suppl 2):57–59

    Article  PubMed  Google Scholar 

  • Bohndorf K, Reiser M, Lochner B, Feaux de Lacroux W, Steinbrich W (1986) Magnetic resonance imaging of primary tumors and tumor like lesions of bone. Skeletal Radiol 15:511–517

    Article  PubMed  CAS  Google Scholar 

  • Brown KT, Kattapuram SSV, Rosentahl DI (1986) Computed tomography analysis of bone tumors: patterns of cortical destruction and soft tissue extension. Skeletal Radiol 15:448–451

    Article  PubMed  CAS  Google Scholar 

  • De Baere T, Vanel D, Shapeero LG, Charpentier A, Terrier P, Di Paola M (1992) Osteosarcoma after chemotherapy: evaluation with contrast material-enhanced subtraction MR imaging. Radiology 185:587–592

    PubMed  Google Scholar 

  • Deutsch A, Resnick D (1980) Eccentric cortical metastases to the skeleton from bronchogenic carcinoma. Radiology 137:49–52

    PubMed  CAS  Google Scholar 

  • Eustace S, Tello R, DeCarvalho V et al (1997) A comparison of whole-body turbo STIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. Am J Roentgenol 169:1655–1661

    Article  CAS  Google Scholar 

  • Fragiadakis EG, Panayotopoulous G (1972) Metastatic carcinoma of the hand. Hand 4:268

    Article  PubMed  CAS  Google Scholar 

  • Geirnaerdt MJ, Hogendoorn PC, Bloem JL, Taminiau AH, van der Woude HJ (2000) Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology 214(2):539–546

    PubMed  CAS  Google Scholar 

  • Glass RB, Poznanski AK, Fisher MR, Shkolnik A, Dias L (1986) MR imaging of osteoid osteoma. J Comput Assist Tomogr 10:1065–1067

    Article  PubMed  CAS  Google Scholar 

  • Kattapuram SV, Khurana JS, Scott JA et al (1990) Negative scintigraphy with positive magnetic resonance imaging in bone metastases. Skeletal Radiol 19:113–116

    Article  PubMed  CAS  Google Scholar 

  • Kenney PJ, Gilula LA, Murphy WA (1981) The use of CT to distinguish osteochondroma and chondrosarcoma. Radiology 138:129–137

    Google Scholar 

  • Krishnamurthy GT, Tubis M, Hiss J et al (1977) Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA 237:2504–2506

    Article  PubMed  CAS  Google Scholar 

  • Laredo JD, Lakhdari K, Bellaiche L et al (1995) Acute vertebral collapse: CT findings in benign and malignant non-traumatic cases. Radiology 194:41–48

    PubMed  CAS  Google Scholar 

  • Lauenstein TC, Freudenberg LS, Goehde SC et al (2002) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099

    PubMed  Google Scholar 

  • Lecouvet FE, Vande Berg BC, Malghem J, Maldague BE (2001) Magnetic resonance and computed tomography imaging in multiple myeloma. Semin Musculoskelet Radiol 5(1):43–55, Review

    Article  PubMed  CAS  Google Scholar 

  • Lodwick GS, Wilson AJ, Farrel C, Virtama P, Smeltzer FM, Ditrich F (1980) Estimating rate of growth in bone lesions: observer performance and error. Radiology 134:585–590

    PubMed  CAS  Google Scholar 

  • Madewell JE, Ragsdale BD, Sweet DE (1981) Radiology and pathology analysis of solitary bone lesions. Radiol Clin North Am 19:715–748

    PubMed  CAS  Google Scholar 

  • Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT (1998) Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics 18(5):1213–1237; quiz 1244–1245

    PubMed  CAS  Google Scholar 

  • Picci P, Vanel D, Briccoli A, Talle K, Haakenaasen U, Malaguti C, Monti C, Ferrari C, Bacci G, Saeter G, Alvegard TA (2001) Computed tomography of pulmonary metastases from osteosarcoma: the less poor technique. A study of 51 patients with histological correlation. Ann Oncol 12(11):1601–1604

    Article  PubMed  CAS  Google Scholar 

  • Regent D, Tamisier JN, Fery A, Bernard C, Delagoutte JP, Pourel JP, Gaucher A (1986) Intérêt du traitement de l’information dans l’exploration scanographique des lésions focales bénignes de l’os. Rev Rhum Mal Osteoartic 53:77–82

    PubMed  CAS  Google Scholar 

  • Rosselli Del Turco M, Palli D, Cariddi A, Ciatto S, Pacini P, Distante V (1994) Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial National Research Council Project on Breast Cancer follow-up. JAMA 271:1593–1597

    Article  PubMed  CAS  Google Scholar 

  • Schima W, Amann G, Stiglbauer R et al (1994) Preoperative staging of osteosarcoma: efficacy of MR imaging in detecting joint involvement. AJR Am J Roentgenol 163:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Shaylor PJ, Peake D, Grimer RJ, Carter SR, Tillman RM, Spooner D (1999) Paget’s osteosarcoma – no cure in sight. Sarcoma 3(3–4):191–192

    Article  PubMed  CAS  Google Scholar 

  • Silverberg E, Lubera J (1987) Cancer statistics, 1987. CA Cancer J Clin 37:2–19

    Article  PubMed  CAS  Google Scholar 

  • Staals EL, Bacchini P, Bertoni F (2006) Dedifferentiated central chondrosarcoma. Cancer 106(12):2682–2691

    Article  PubMed  Google Scholar 

  • Staals EL, Bacchini P, Mercuri M, Bertoni F (2007) Dedifferentiated chondrosarcomas arising in preexisting osteochondromas. J Bone Joint Surg Am 89(5):987–993

    Article  PubMed  Google Scholar 

  • Traill ZC, Talbot D, Golding S et al (1999) Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases. Clin Radiol 54:448–451

    Article  PubMed  CAS  Google Scholar 

  • van der Woude HJ, Bloem JL, Holscher HC, Nooy MA, Taminiau AH, Hermans J, Falke TH, Hogendoorn PC (1994) Monitoring the effect of chemotherapy in Ewing’s sarcoma of bone with MR imaging. Skeletal Radiol 23(7):493–500

    PubMed  Google Scholar 

  • Vanel D, Henri-Amar M, Lumbroso J, Lemalet E, Couanet D, Piekarski JD, Masselot J, Boddaert A, Kalifa C, Le Chevalier T, Lemoine G (1984) Pulmonary evaluation of patients with osteosarcoma: roles of standard radiography, tomography, CT, scintigraphy and tomoscintigraphy. AJR Am J Roentgenol 143:519–523

    Article  PubMed  CAS  Google Scholar 

  • Vanel D, Bittoun J, Tardivon A (1998) MRI of bone metastases. Eur Radiol 8:1345–1351

    Article  PubMed  CAS  Google Scholar 

  • Vanel D, Kreshak J, Larousserie F, Alberghini M, Mirra J, De Paolis M, Picci P (2012) Enchondroma vs. chondrosarcoma: a simple, easy-to-use, new magnetic resonance sign. Eur J Radiol [Epub ahead of print]

    Google Scholar 

  • Verstraete KL, De Deene Y, Roels H et al (1994) Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging parametric “first-pass” images depict tissue vascularization and perfusion. Radiology 192:835–843

    PubMed  CAS  Google Scholar 

  • Wyche LD, De Santos LA (1978) Spiculated periosteal reaction in metastatic disease resembling osteosarcoma. Orthopedics 1:215

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vanel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanel, D., Picci, P., Ridereau-Zins, C., Gambarotti, M. (2013). Bone Tumors. In: Guglielmi, G., Peh, W., Guermazi, A. (eds) Geriatric Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35579-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35579-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35578-3

  • Online ISBN: 978-3-642-35579-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics