Skip to main content

An Efficient Method of Building an Ensemble of Classifiers in Streaming Data

  • Conference paper
Big Data Analytics (BDA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7678))

Included in the following conference series:

Abstract

To efficiently refine a classifier in streaming data such as sensor data and web log data we have to decide whether each streaming unlabeled datum is selected or not. The exiting methods refine a classifier based on a regular time interval. They refine a classifier even if the classification accuracy of the classifier is high. Also it uses a classifier even if the classification accuracy is low. In this paper, our ensemble method selects data in an online process that should be labeled. The selected data are used to build new classifiers of an ensemble. Our selection methodology uses training data that are applied to generate an ensemble of classifiers over streaming data. We compared the results of our ensemble approach and of a conventional ensemble approach where new classifiers for an ensemble are periodically generated. In experiments with ten benchmark data sets including three real streaming data sets, our ensemble approach generated 12.9% new classifiers for the chunk-based ensemble approach using partially labeled samples, and used an average of 10% labeled samples for the ten data sets. In all the experiments, our ensemble approach produced comparable classification accuracy. We showed that our approach can efficiently maintain the performance of an ensemble over streaming data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minku, L.L., Yao, X.: DDD: A New Ensemble Approach for Dealing with Concept Drift. IEEE Transactions on Knowledge and Data Engineering (99) (2011), doi:10.1109/TKDE.2011.58

    Google Scholar 

  2. Ryu, J.W., Kantardzic, M., Walgampaya, C.: Ensemble Classifier Based on Misclassified Streaming Data. In: Proc. of the 10th IASTED Int. Conf. on Artificial Intelligence and Applications, Austria, pp. 347–354 (2010)

    Google Scholar 

  3. Gao, J., Fan, W., Han, J.: On Appropriate Assumptions to Mine Data Streams: Analysis and Practice. In: Proc. of the 7th IEEE ICDM, USA, pp. 143–152 (2007)

    Google Scholar 

  4. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining Concept-Drifting Data Streams using Ensemble Classifiers. In: Proc. of the 9th ACM SIGKDD KDD, USA, pp. 226–235 (2003)

    Google Scholar 

  5. Chu, F., Zaniolo, C.: Fast and Light Boosting for Adaptive Mining of Data Streams. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 282–292. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Zhang, P., Zhu, X., Shi, Y.: Categorizing and Mining Concept Drifting Data Streams. In: Proc. of the 14th ACM SIGKDD, USA, pp. 812–820 (2008)

    Google Scholar 

  7. Zhang, P., Zhu, X., Shi, Y., Wu, X.: An Aggregate Ensemble for Mining Concept Drifting Data Streams with Noise. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 1021–1029. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Wei, Q., Yang, Z., Junping, Z., Youg, W.: Mining Multi-Label Concept-Drifting Data Streams Using Ensemble Classifiers. In: Proc. of the 6th FSKD, China, pp. 275–279 (2009)

    Google Scholar 

  9. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. In: ICDM, Pisa, Italy, pp. 929–934 (2008)

    Google Scholar 

  10. Woolam, C., Masud, M.M., Khan, L.: Lacking Labels in the Stream: Classifying Evolving Stream Data with Few Labels. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 552–562. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Zhu, X., Zhang, P., Lin, X., Shi, Y.: Active Learning from Data Streams. In: Proceeding of the 7th IEEE International Conference on Data Mining, USA, pp. 757–762 (2007)

    Google Scholar 

  12. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining Concept-Drifting Data Streams using Ensemble Classifiers. In: Proc. of the 9th ACM SIGKDD, USA, pp. 226–235 (2003)

    Google Scholar 

  13. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  14. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in Evaluation of Stream Learning Algorithms. In: Proceeding of the 15th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, France, pp. 329–338 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryu, J.W., Kantardzic, M.M., Kim, MW., Ra Khil, A. (2012). An Efficient Method of Building an Ensemble of Classifiers in Streaming Data. In: Srinivasa, S., Bhatnagar, V. (eds) Big Data Analytics. BDA 2012. Lecture Notes in Computer Science, vol 7678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35542-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35542-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35541-7

  • Online ISBN: 978-3-642-35542-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics