Skip to main content

A New Manifold Learning Algorithm Based on Incremental Spectral Decomposition

  • Conference paper
Advanced Data Mining and Applications (ADMA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7713))

Included in the following conference series:

  • 3513 Accesses

Abstract

Manifold learning is to construct nonlinear low-dimensional manifolds from sample data points embedded in high-dimensional spaces. In streaming data applications, new data points come continually, which will change the existing data points’ neighborhoods and their local distributions. Such applications call for incremental algorithms not only to deal with the adding of new data points but also to update the local neighborhoods of the existing data points. In this paper, we introduce a new manifold learning algorithm by updating the structure of eigen-problem iteratively. Incremental spectral decomposition is used in the iterative process and the resulting eigenvectors correspond to the low dimensional embedded coordinates. Experimental results show that 1) as the number of data points increases, the mapping results of the proposed approach become closer and closer to that of batch-style approaches, including LTSA and LE, and 2) the proposed approach outperforms the incremental ISOMAP (IISOMAP, a typical incremental manifold learning algorithm) in mapping accuracy. We argue that the new algorithm is suitable for incremental learning of large-scale data streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally Linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences 100, 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  6. Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing 26, 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ning, H.Z., Xu, W., et al.: Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition 43, 113–127 (2010)

    Article  MATH  Google Scholar 

  8. Saul, L., Roweis, S.: Think globally, fit locally: Unsupervised learning of nonlinear manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  Google Scholar 

  9. Golub, G.H., Van, L.C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Law, M.H.C., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans on Pattern Analysis and Machine Intelligence 28, 377–391 (2006)

    Article  Google Scholar 

  11. Zhang, Y., Weng, J.: Convergence analysis of complementary candid incremental principal component Analysis. Technical report, Michigan State University (2001)

    Google Scholar 

  12. Yan, J., Zhang, B., et al.: IMMC: Incremental maximum margin criterion. In: Proceedings of SIGKDD 2004, pp. 725–730 (2004)

    Google Scholar 

  13. Lu, K., He, X.: Image retrieval basedon incremental subspace learning. Pattern Recognition 38, 2047–2054 (2005)

    Article  Google Scholar 

  14. Jia, P., Yin, J., et al.: Incremental Laplacian eigenmaps by preserving adjacent information between data points. Pattern Recognition Letters 30, 1457–1463 (2009)

    Article  Google Scholar 

  15. Weng, J.Y., Zhang, Y.L., Hwang, W.S.: Candid Covariance-free Incremental Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence 25(8), 1034–1040 (2003)

    Article  Google Scholar 

  16. Kouropteva, O., Okun, O., et al.: Incremental locally linear embedding. Pattern Recognition 38, 1764–1767 (2005)

    Article  MATH  Google Scholar 

  17. Abdel-Mannan, O., Ben Hamza, A., et al.: Incremental Line Tangent Space Alignment Algorithm. In: Proceedings of CCECE 2007, pp. 1329–1332 (2007)

    Google Scholar 

  18. Coifman, R., Lafon, S., et al.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102(21), 7426–7431 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, C., Guan, J. (2012). A New Manifold Learning Algorithm Based on Incremental Spectral Decomposition. In: Zhou, S., Zhang, S., Karypis, G. (eds) Advanced Data Mining and Applications. ADMA 2012. Lecture Notes in Computer Science(), vol 7713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35527-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35527-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35526-4

  • Online ISBN: 978-3-642-35527-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics