Skip to main content

Self-assembly Models of Variable Resolution

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 7625))

Abstract

Model refinement is an important aspect of the model-building process. It can be described as a procedure which, starting from an abstract model of a system, performs a number of refinement steps in result of which a more detailed model is obtained. At the same time, in order to be correct, the refinement mechanism has to be capable of preserving already proven systemic quantitative properties of the original model, e.g. model fit, stochastic semantics, etc. In this study we concentrate on the refinement in the case of self-assembly models. Self-assembly is a process in which a disordered ensemble of basic components forms an organized structure as a result of specific, local interactions among these components, without external guidance. We develop a generic formal model for this process and introduce a notion of model resolution capturing the maximum size up to which objects can be distinguished individually in the model. All bigger objects are treated homogenously in the model. We show how this self-assembly model can be systematically refined in such a way that its resolution can be increased and decreased while preserving the original model fit to experimental data, without the need for tedious, computationally expensive process of parameter refitting. We demonstrate how the introduced methodology can be applied to a previously published model: we consider the case-study of in vitro self-assembly of intermediate filaments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 2nd edn. Garland Science, New York (2004)

    Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  3. Back, R.-J., von Wright, J.: Refinement Calculus. Springer (1998)

    Google Scholar 

  4. Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology. Trends in Microbiology 15(1), 45–50 (2007)

    Article  Google Scholar 

  5. Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Molecular Systems Biology 5(239) (2009)

    Google Scholar 

  6. Czeizler, E., Mizera, A., Czeizler, E., Back, R.-J., Eriksson, J.E., Petre, I.: Quantitative analysis of the self-assembly strategies of intermediate filaments from tetrameric vimentin (2010) (manuscipt)

    Google Scholar 

  7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling, Symmetries, Refinements. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 103–122. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Vries, G.d., Hillen, T., Lewis, M., Müller, J., Schönfisch, B.: A Course in Mathematical Biology: Quantitative Modelling with Mathematical and Computational Methods. Monographs on Mathematical Modeling and Computation. SIAM (2006)

    Google Scholar 

  9. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  11. Henrikson, R.C., Kaye, G.I., Mazurkiewicz, J.E.: NMS Histology. National Medical Series for Independent Study. Lippincott Williams & Wilkins (1997)

    Google Scholar 

  12. Herrmann, H., Häner, M., Brettel, M., Ku, N.-O., Aebi, U.: Characterization of distinct early assembly units of different intermediate filament proteins. Journal of Molecular Biology 286(5), 1403–1420 (1999)

    Article  Google Scholar 

  13. Herrmann, H., Häner, M., Brettel, M., Müller, S.A., Goldie, K.N., Fedtke, B., Lustig, A., Franke, W.W., Aebi, U.: Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. Journal of Molecular Biology 264(5), 933–953 (1996)

    Article  Google Scholar 

  14. Iverson, K.E.: A Programming Language, 4th edn. Wiley, New York (1962)

    MATH  Google Scholar 

  15. Kirmse, R., Portet, S., Mücke, N., Aebi, U., Herrmann, H., Langowski, J.: A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. Journal of Biological Chemistry 282(52), 18563–18572 (2007)

    Article  Google Scholar 

  16. Kitano, H.: Systems biology: A brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  17. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley-VCH (2006)

    Google Scholar 

  18. Knuth, D.: Two notes on notation. American Mathematical Monthly 99(5), 403–422 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lander, A.D.: The edges of understanding. BMC Biology 8, 40 (2010)

    Article  Google Scholar 

  20. Lok, L., Brent, R.: Automatic generation of cellular reaction networks with moleculizer 1.0. Nat. Biotechnol. 23, 131–136 (2005)

    Article  Google Scholar 

  21. Murphy, E., Danos, V., Feret, J., Krivine, J., Harmer, R.: Rule-based modeling and model refinement. In: Lodhi, H.M., Muggleton, S.H. (eds.) Elements of Computational Systems Biology. John Wiley & Sons, Inc., Hoboken (2010)

    Google Scholar 

  22. Raman, K., Chandra, N.: Systems biology. Resonance 15(2), 131–153 (2010)

    Article  Google Scholar 

  23. Scherlis, W.L., Scott, D.S.: First steps towards inferential programming. In: Mason, R.E.A. (ed.) Information Processing 83: Proceedings of the IFIP 9th World Computer Congress (1983)

    Google Scholar 

  24. Wirth, N.: Program development by stepwise refinement. Communications of the ACM 14(4), 221–227 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mizera, A., Czeizler, E., Petre, I. (2012). Self-assembly Models of Variable Resolution. In: Priami, C., Petre, I., de Vink, E. (eds) Transactions on Computational Systems Biology XIV. Lecture Notes in Computer Science(), vol 7625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35524-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35524-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35523-3

  • Online ISBN: 978-3-642-35524-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics