Skip to main content

Copula-Based Models for Multivariate Discrete Response Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 213))

Abstract

In this survey we review copula-based models and methods for multivariate discrete data modeling. Advantages and disadvantages of recent contributions are summarized and a general modeling procedure is suggested in this context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Both approximations to MVN rectangle in [18], the 1-dimensional integral in the positive exchangeable case, and the method in [50], can be computed with the functions mvnapp, exchmvn, and pmnorm, respectively, in the R package mprobit [21]. The methods in [11] can be computed with the function pmvnorm in the R package mvtnorm [12].

References

  1. Abdous, B., Genest, C., Rémillard, B.: Dependence properties of meta-elliptical distributions. In: Duchesne, P., Rémillard, B. (eds.) Statistical Modelling and Analysis for Complex Data Problems, pp. 1–15. Kluwer, Dordrecht (2005)

    Chapter  Google Scholar 

  2. Ashford, J.R., Sowden, R.R.: Multivariate probit analysis. Biometrics 26, 535–546 (1970)

    Article  Google Scholar 

  3. Cameron, A.C., Li, T., Trivedi, P.K., Zimmer, D.M.: Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts. Econom. J. 7(2), 566–584 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choros, B., Härdle, W., Okhrin, O.: CDO pricing with copulae. Discussion paper 2009-013, SFB 649, Humboldt Universität zu Berlin, Berlin (2009)

    Google Scholar 

  5. Denuit, M., Lambert, P.: Constraints on concordance measures in bivariate discrete data. J. Multivar. Anal. 93(1), 40–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Famoye, F.: A new bivariate generalized Poisson distribution. Stat. Neerl. 64, 112–124 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fang, H.B., Fang, K.T., Kotz, S.: The meta-elliptical distributions with given marginals. J. Multivar. Anal. 82, 1–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gauvreau, K., Pagano, M.: The analysis of correlated binary outcomes using multivariate logistic regression. Biometrical J. 39, 309–325 (1997)

    Article  MATH  Google Scholar 

  9. Genest, C., Nešlehová, J.: A primer on copulas for count data. Astin Bull. 37, 475–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Genest, C., Nikoloulopoulos, A.K., Rivest, L.P., Fortin, M.: Predicting dependent binary outcomes through logistic regressions and meta-elliptical copulas. Braz. J. Probab. Stat. (2013, in press)

    Google Scholar 

  11. Genz, A., Bretz, F.: Methods for the computation of the multivariate t-probabilities. J. Comput. Graph. Stat. 11, 950–971 (2002)

    Article  MathSciNet  Google Scholar 

  12. Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Hothorn, T.: mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-9992. URL http://CRAN.R-project.org/package=mvtnorm (2012)

  13. Goodman, L., Kruskal, W.: Measures of association for cross classifications. J. Am. Stat. Assoc. 49, 732–764 (1954)

    MATH  Google Scholar 

  14. Hausman, J., Wise, D.: A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 45, 319–339 (1978)

    MathSciNet  Google Scholar 

  15. Hofert, M.: Construction and sampling of nested archimedean copulas. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula Theory and Its Applications, Proceedings of the Workshop held in Warsaw, 25–26 September, pp. 147–160. Springer, Berlin (2009)

    Google Scholar 

  16. Hofert, M., Mächler, M.: Nested archimedean copulas meet R: The nacopula package. J. Stat. Softw. 39, 1–20 (2011)

    Google Scholar 

  17. Joe, H.: Parametric families of multivariate distributions with given margins. J. Multivar. Anal. 46, 262–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joe, H.: Approximations to multivariate normal rectangle probabilities based on conditional expectations. J. Am. Stat. Assoc. 90(431), 957–964 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)

    Book  MATH  Google Scholar 

  20. Joe, H.: Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivar. Anal. 94(2), 401–419 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joe, H., Chou, L.W., Zhang, H.: mprobit: Multivariate probit model for binary/ordinal response. R package version 0.9-3. URL http://CRAN.R-project.org/package=mprobit (2011)

  22. Joe, H., Hu, T.: Multivariate distributions from mixtures of max-infinitely divisible distributions. J. Multivar. Anal. 57(2), 240–265 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Joe, H., Li, H., Nikoloulopoulos, A.K.: Tail dependence functions and vine copulas. J. Multivar. Anal. 101, 252–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, N.L., Kotz, S.: Continuous Multivariate Distributions. Wiley, New York (1972)

    MATH  Google Scholar 

  25. Johnson, N.L., Kotz, S.: On some generalized Farlie-Gumbel-Morgenstern distributions. Commun. Stat. 4, 415–427 (1975)

    MathSciNet  MATH  Google Scholar 

  26. Johnson, N.L., Kotz, S.: On some generalized Farlie-Gumbel-Morgenstern distributions – II Regression, correlation and further generalizations. Commun. Stat. 6, 485–496 (1977)

    Article  MathSciNet  Google Scholar 

  27. Lakshminarayana, J., Pandit, S.N.N., Rao, K.S.: On a bivariate Poisson distribution. Commun. Stat.-Theory Method. 28, 267–276 (1999)

    Article  MATH  Google Scholar 

  28. Lee, A.: Modelling rugby league data via bivariate negative binomial regression. Aust. N. Z. J. Stat. 41(2), 141–152 (1999)

    Article  MATH  Google Scholar 

  29. Li, J., Wong, W.K.: Two-dimensional toxic dose and multivariate logistic regression, with application to decompression sickness. Biostatistics 12, 143–155 (2011)

    Article  Google Scholar 

  30. McHale, I., Scarf, P.: Modelling soccer matches using bivariate discrete distributions with general dependence structure. Stat. Neerl. 61(4), 432–445 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. McNeil, A.J., Nešlehová, J.: Multivariate Archimedean copulas, d-monotone functions and l 1-norm symmetric distributions. Ann. Stat. 37, 3059–3097 (2009)

    Article  MATH  Google Scholar 

  32. Meester, S., MacKay, J.: A parametric model for cluster correlated categorical data. Biometrics 50, 954–963 (1994)

    Article  MATH  Google Scholar 

  33. Mesfioui, M., Tajar, A.: On the properties of some nonparametric concordance measures in the discrete case. J. Nonparametr. Stat. 17(5), 541–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miravete, E.J.: Multivariate Sarmanov count data models. CEPR Discussion Paper No. DP7463, University of Texas at Austin; Centre for Economic Policy Research (2009)

    Google Scholar 

  35. Muthén, B.: Contributions to factor analysis of dichotomous variables. Psychometrika 43, 551–560 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nash, J.: Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd edn. Hilger, New York (1990)

    MATH  Google Scholar 

  37. Nelsen, R.B.: An Introduction to Copulas. Springer, New York (2006)

    MATH  Google Scholar 

  38. Nešlehová, J.: On rank correlation measures for non-continuous random variables. J. Multivar. Anal. 98, 544–567 (2007)

    Article  MATH  Google Scholar 

  39. Nikoloulopoulos, A.K.: Letter to the editor. Biostatistics 13, 1–3 (2012)

    Article  Google Scholar 

  40. Nikoloulopoulos, A.K.: On the estimation of normal copula discrete regression models using the continuous extension and simulated likelihood. ArXiv e-prints, arXiv:1304.0905 (2013)

    Google Scholar 

  41. Nikoloulopoulos, A.K., Joe, H., Chaganty, N.R.: Weighted scores method for regression models with dependent data. Biostatistics 12, 653–665 (2011)

    Article  Google Scholar 

  42. Nikoloulopoulos, A.K., Joe, H., Li, H.: Extreme value properties of multivariate t copulas. Extremes 12, 129–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nikoloulopoulos, A.K., Joe, H., Li, H.: Vine copulas with asymmetric tail dependence and applications to financial return data. Comput. Stat. Data Anal. 56, 659–3673 (2012)

    Article  MathSciNet  Google Scholar 

  44. Nikoloulopoulos, A.K., Karlis, D.: Multivariate logit copula model with an application to dental data. Stat. Med. 27, 6393–6406 (2008)

    Article  MathSciNet  Google Scholar 

  45. Nikoloulopoulos, A.K., Karlis, D.: Finite normal mixture copulas for multivariate discrete data modeling. J. Stat. Plan. Inference 139, 3878–3890 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nikoloulopoulos, A.K., Karlis, D.: Modeling multivariate count data using copulas. Commun. Stat. Simul. Comput. 39, 172–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nikoloulopoulos, A.K., Karlis, D.: Regression in a copula model for bivariate count data. J. Appl. Stat. 37, 1555–1568 (2010)

    Article  MathSciNet  Google Scholar 

  48. Panagiotelis, A., Czado, C., Joe, H.: Pair copula constructions for multivariate discrete data. J. Am. Stat. Assoc. 107, 1063–1072 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pitt, M., Chan, D., Kohn, R.: Efficient Bayesian inference for Gaussian copula regression models. Biometrika 93, 537–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schervish, M.: Algorithm AS 195. Multivariate normal probabilities with error bound. Appl. Stat. 33, 81–94 (1984)

    MATH  Google Scholar 

  51. Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8, 229–231 (1959)

    MathSciNet  Google Scholar 

  52. Smith, M.S.: Bayesian approaches to copula modelling. In: Damien, P., Dellaportas, P., Polson, N., Stephens, D. (eds.) Bayesian Theory and Applications. Oxford University Press, USA (2013)

    Google Scholar 

  53. Smith, M.S., Gan, Q., Kohn, R.: Modeling dependence using skew t copulas: Bayesian inference and applications. J. Appl. Econom. 27, 500–522 (2012)

    Article  MathSciNet  Google Scholar 

  54. Smith, M.S., Khaled, M.A.: Estimation of copula models with discrete margins via Bayesian data augmentation. J. Am. Stat. Assoc. 107, 290–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Song, P.X.K.: Correlated Data Analysis: Modeling, Analytics, and Application. Springer, New Yory (2007)

    MATH  Google Scholar 

  56. Song, P.X.K., Li, M., Yuan, Y.: Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65, 60–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Trégouët, D.A., Ducimetière, P., Bocquet, V., Visvikis, S., Soubrier, F., Tiret, L.: A parametric copula model for analysis of familial binary data. Am. J. Hum. Genet. 64(3), 886–93 (1999)

    Article  Google Scholar 

  58. Varin, C.: On composite marginal likelihoods. Adv. Stat. Anal. 92, 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Varin, C., Reid, N., Firth, D.: An overview of composite likelihood methods. Stat. Sin. 21, 5–42 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Xu, J.: Statistical modelling and inference for multivariate and longitudinal discrete response. Ph.D. thesis, The University of British Columbia (1996)

    Google Scholar 

  61. Zhao, Y., Joe, H.: Composite likelihood estimation in multivariate data analysis. Can. J. Stat. 33(3), 335–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zimmer, D., Trivedi, P.: Using trivariate copulas to model sample selection and treatment effects: Application to family health care demand. J. Bus. Econ. Stat. 24(1), 63–76 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Professor Harry Joe, University of British Columbia, for helpful comments and suggestions on an earlier version of this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis K. Nikoloulopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikoloulopoulos, A.K. (2013). Copula-Based Models for Multivariate Discrete Response Data. In: Jaworski, P., Durante, F., Härdle, W. (eds) Copulae in Mathematical and Quantitative Finance. Lecture Notes in Statistics(), vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35407-6_11

Download citation

Publish with us

Policies and ethics