Skip to main content

Part of the book series: Springer Finance ((FINANCE))

  • 6559 Accesses

Abstract

In Sect. 4.5, we considered local volatility models as an extension of the Black–Scholes model. These models replace the constant volatility by a deterministic volatility function, i.e. the volatility is a deterministic function of s and t. In stochastic volatility (SV) models, the volatility is modeled as a function of at least one additional stochastic process. Such models can explain some of the empirical properties of asset returns, such as volatility clustering and the leverage effect. These models can also account for long term smiles and skews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Achdou and N. Tchou. Variational analysis for the Black and Scholes equation with stochastic volatility. M2AN Math. Model. Numer. Anal., 36(3):373–395, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Applebaum. Lévy processes and stochastic calculus, volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  3. C.A. Ball and A. Roma. Stochastic volatility option pricing. J. Financ. Quant. Anal., 29(4):589–607, 1994.

    Article  Google Scholar 

  4. O.E. Barndorff-Nielsen and N. Shephard. Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol., 63(2):167–241, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.S. Bates. Jumps stochastic volatility: the exchange rate process implicit in Deutsche Mark options. Rev. Finance, 9(1):69–107, 1996.

    Google Scholar 

  6. D.S. Bates. Post-’87 crash fears in the S&P 500 futures option market. J. Econ., 94(1–2):181–238, 2000.

    MathSciNet  MATH  Google Scholar 

  7. F.E. Benth and M. Groth. The minimal entropy martingale measure and numerical option pricing for the Barndorff-Nielsen–Shephard stochastic volatility model. Stoch. Anal. Appl., 27(5):875–896, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Carr, H. Geman, D.B. Madan, and M. Yor. Stochastic volatility for Lévy processes. Math. Finance, 13(3):345–382, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna. Multiscale stochastic volatility asymptotics. Multiscale Model. Simul., 2(1):22–42, 2003.

    Article  MathSciNet  Google Scholar 

  10. J.P. Fouque, G. Papanicolaou, and K.R. Sircar. Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  11. S.L. Heston. A closed-form solution for options with stochastic volatility, with applications to bond and currency options. Rev. Finance, 6:327–343, 1993.

    Google Scholar 

  12. N. Hilber, A.M. Matache, and Ch. Schwab. Sparse wavelet methods for option pricing under stochastic volatility. J. Comput. Finance, 8(4):1–42, 2005.

    Google Scholar 

  13. S. Ikonen and J. Toivanen. Efficient numerical methods for pricing American options under stochastic volatility. Numer. Methods Partial Differ. Equ., 24(1):104–126, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Schöbel and J. Zhu. Stochastic volatility with an Ornstein–Uhlenbeck process: an extension. Eur. Finance Rev., 3:23–46, 1999.

    Article  MATH  Google Scholar 

  15. L.O. Scott. Option pricing when the variance changes randomly: theory, estimation, and an application. J. Financ. Quant. Anal., 22:419–438, 1987.

    Article  Google Scholar 

  16. N. Shephard, editor. Stochastic volatility: selected readings. Oxford University Press, London, 2005.

    MATH  Google Scholar 

  17. E.M. Stein and J.C. Stein. Stock price distributions with stochastic volatility: an analytic approach. Rev. Finance, 4(4):727–752, 1991.

    Google Scholar 

  18. R. Zvan, P.A. Forsyth, and K.R. Vetzal. Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math., 91(2):199–218, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hilber, N., Reichmann, O., Schwab, C., Winter, C. (2013). Stochastic Volatility Models. In: Computational Methods for Quantitative Finance. Springer Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35401-4_9

Download citation

Publish with us

Policies and ethics