Skip to main content

Dielectric Properties of Polymers at Low Temperatures

  • Chapter
  • First Online:
Polymers at Cryogenic Temperatures

Abstract

Dielectric spectroscopy is a powerful method that allows the study of the dynamics of polymers in a wide frequency range. The different regimes of the dielectric function can be observed and the dynamics of the primary and secondary relaxations can be found. In fact, to obtain a complete characterization, a large range of frequencies and temperatures must be used. In this work, the investigation was focused in poly(lactid acid), PLA, in two forms, industrial and purified. This polymer is an aliphatic polyester, and one of the most important biocompatible and biodegradable material that has received increasing attention in the last 10 years. The β relaxation was observed between −150 and −30 °C, in frequency domain measurements between 1 Hz and 100 kHz, and was assigned to the secondary relaxation in the glassy state. The changes in the structure, which are connected with the water penetration in the polymer, directly affect that relaxation process. Water molecules confined by the polymer chains and in the polymer networks itself play an important role in the degradation of the material. We studied the evolution of that degradation during 4 weeks, in a controlled humidity environment. It is accepted that water preferentially enters in the amorphous zones, but also affects the crystalline regions. It is observed a clear evolution of the relaxation activation energy during the degradation of the polymer. The dielectric relaxation studies are complemented with water permeability measurements during the degradation process with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  2. Bottcher CJF, Bordewijk P (1978) Theory of electric polarization. Elsevier, Amsterdam

    Google Scholar 

  3. Hevig P (1977) Dielectric spectroscopy of polymers. Adam Hilger, Bristol

    Google Scholar 

  4. Debye P (1929) Polar molecules. Chemical Catalog, New York

    Google Scholar 

  5. Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy, theory, experiment and applications. Wiley, New Jersey

    Google Scholar 

  6. Williams G, Watts D (1970) Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  7. Havriliak S, Havriliak SJ (1997) Dielectric and mechanical relaxation in materials. Hanser, New York

    Google Scholar 

  8. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem Phys 9:341–352

    Article  CAS  Google Scholar 

  9. Davidson DW, Cole RH (1950) Dielectric relaxation in glycerol. J Chem Phys 18:1417–1419

    Article  CAS  Google Scholar 

  10. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  CAS  Google Scholar 

  11. Kremer F, Arndt M (1997) Broadband dielectric measurements techniques. In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington

    Google Scholar 

  12. McCrun NG, Read BE, Willians G (1991) Anelastic and dielectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  13. Westphal WB, von Hippel AR (1954) Dielectric materials and applications. MIT Press and Wiley, New York

    Google Scholar 

  14. Amstrong D, Race WP, Thirsk HR (1968) Determination of electrode impedance over an extended frequency range by alternating current bridge methods. Electrochim Acta 13:215–239

    Article  Google Scholar 

  15. Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20:289–305

    Article  CAS  Google Scholar 

  16. Costa LC (1995) Propriedades eléctricas de vidros com alguns iões de terras raras. Ph.D. Thesis, Aveiro

    Google Scholar 

  17. Calvert R (1948) A new technique in bridge measurements. Electron Eng 20:28–29

    Google Scholar 

  18. Henry F (1961) Développement de la métrologie hyperfréquences et application à l′étude de l′hydratation et la diffusion de l′eau dans les matériaux macromoléculaires. Ph.D. Thesis, Paris

    Google Scholar 

  19. Karasz FE (1972) Dielectric properties of polymers. Plenum, New York

    Book  Google Scholar 

  20. Costa LC (2011) Double relaxation processes in the glass system xEu2O3.PbO.2B2O3 studied by Broadband Dielectric Spectroscopy. J Non Cryst Sol 357:2178–2181

    Article  CAS  Google Scholar 

  21. Ku CC, Liepins R (1987) Electrical properties of polymers. Hanser, Munich

    Google Scholar 

  22. Adachi K (1997) Dielectric relaxation in polymer solutions. In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington

    Google Scholar 

  23. Riande E, Saiz E (1992) Dipole moments and birefringence of polymers. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Fuoss RM, Kirkwood JG (1941) Electrical properties of solids.VIII. Dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63:385–394

    Article  CAS  Google Scholar 

  25. Blythe AR (1979) Electrical properties of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  26. Macdonald D (2006) Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  27. Collin RE (1966) Foundations for microwave engineering. McGraw Hill, New York

    Google Scholar 

  28. McKubre MCH, Macdonald DD (2005) Impedance measurement techniques. In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington

    Google Scholar 

  29. Belatar J, Graça MPF, Costa LC, Achour ME, Brosseau C (2010) Electric modulus-based analysis of the dielectric relaxation in carbon black loaded polymer composites. J Appl Phys 107:124111

    Article  Google Scholar 

  30. Stanford Research Systems (1995) SR850 Lockin Amplifier Manual

    Google Scholar 

  31. El Hasnaoui M, Graça MPFG, Achour ME, Costa LC, Outzourhit A, Oueriagli A, El Harfi A (2010) Effect of temperature on the electrical properties of copolymer/carbon black mixtures. J Non Cryst Sol 356:1536–1541

    Article  CAS  Google Scholar 

  32. Baker-Jarvis J (1990) Transmission/reflection and short circuit line permittivity measurements. National Institute of Standards and Technology, Colorado

    Google Scholar 

  33. Schonhals A, Kremer F (2003) Analysis of dielectric spectra. In: Kremer F, Schonhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  34. Tsai YT, Whitmore DH (1982) Nonlinear least-squares analyses of complex impedance and admittance data for solid electrolytes. Sol Stat Ion 7:129–139

    Article  CAS  Google Scholar 

  35. Schonhals A (1998) Dielectric spectroscopy on the dynamics of amorphous polymeric systems. Novocontrol application note dielectrics 1. pp 1–16

    Google Scholar 

  36. Henry F, Costa LC, Devassine M (2005) The evolution of poly(lactid acid) degradability by dielectric spectroscopy measurements. Eur Polym J 41:2122–2126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Cadillon Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costa, L.C., Henry, F. (2013). Dielectric Properties of Polymers at Low Temperatures. In: Kalia, S., Fu, SY. (eds) Polymers at Cryogenic Temperatures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35335-2_8

Download citation

Publish with us

Policies and ethics