Skip to main content

Gradient Based Learning in Vector Quantization Using Differentiable Kernels

  • Conference paper
Advances in Self-Organizing Maps

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 198))

Abstract

Supervised and unsupervised prototype based vector quantization frequently are proceeded in the Euclidean space. In the last years, also non-standard metrics became popular. For classification by support vector machines, Hilbert space representations are very successful based on so-called kernel metrics. In this paper we give the mathematical justification that gradient based learning in prototype-based vector quantization is possible by means of kernel metrics instead of the standard Euclidean distance. We will show that an appropriate handling requires differentiable universal kernels defining the kernel metric. This allows a prototype adaptation in the original data space but equipped with a metric determined by the kernel. This approach avoids the Hilbert space representation as known for support vector machines. Moreover, we give prominent examples for differentiable universal kernels based on information theoretic concepts and show exemplary applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Hamza, A., Krim, H.: Jensen-Rényi divergence measure: theoretical and computational perspectives. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 257–257 (2003)

    Google Scholar 

  3. Bezdek, J.: A convergence theorem for the fuzyy ISODATA clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(1), 1–8 (1980)

    Article  MATH  Google Scholar 

  4. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  5. Biehl, M., Bunte, K., Schleif, F.-M., Schneider, P., Villmann, T.: Large margin discriminative visualization by matrix relevance learning. In: Abbass, H., Essam, D., Sarker, R. (eds.) Proc. of the International Joint Conference on Neural Networks (IJCNN), Brisbane, pp. 1873–1880. IEEE Computer Society Press, Los Alamitos (2012)

    Google Scholar 

  6. Biehl, M., Hammer, B., Schleif, F.-M., Schneider, P., Villmann, T.: Stationarity of matrix relevance learning vector quantization. Machine Learning Reports 3(MLR-01-2009), 1–17 (2009) ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/mlr_01_2009.pdf

  7. Blake, C., Merz, C.: UCI repository of machine learning databases. Dep. of Information and Computer Science, University of California, Irvine (1998), http://www.ics.edu/mlearn/MLRepository.html

    Google Scholar 

  8. Chan, A., Vasconcelos, N., Moreno, P.: A family of probabilistic kernels based on information divergence. Technical Report SVCL-TR 2004/01, Statistical Visual Computing Laboratory (SVCL) at Universit of California, San Diego (2004)

    Google Scholar 

  9. Cichocki, A., Amari, S.-I.: Families of alpha- beta- and gamma- divergences: Flexible and robust measures of similarities. Entropy 12, 1532–1568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cichocki, A., Cruces, S., Amari, S.-I.: Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy 13, 134–170 (2011)

    Article  Google Scholar 

  11. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, A.: Margin analysis of the LVQ algorithm. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing (Proc. NIPS 2002), vol. 15, pp. 462–469. MIT Press, Cambridge (2003)

    Google Scholar 

  12. Ferreira, J., Menegatto, V.: Reproducing properties of differentiable Mercer-like kernels. Mathematische Nachrichten 285 (in press, 2012)

    Google Scholar 

  13. Frénay, B., Verleysen, M.: Parameter-free kernel in extreme learning for non-linear support vector regression. Neurocomputing 74(16), 2526–2531 (2011)

    Article  Google Scholar 

  14. Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.: Kernel methods for measuring independence. Journal of Machine Learning Research 6, 2075–2129 (2005)

    MATH  Google Scholar 

  15. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  16. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  17. Hein, M., Bousquet, O.: Hilbertian metrics and positive definite kernels on probability measures. Technical report, Max Planck Institute for Biological Cybernetics (2004)

    Google Scholar 

  18. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  19. Hoffmann, T., Schölkopf, B., Smola, A.: Kernel methods in machine learning. The Annals of Statistics 36(3), 1171–1220 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kästner, M., Hammer, B., Biehl, M., Villmann, T.: Functional relevance learning in generalized learning vector quantization. Neurocomputing 90(9), 85–95 (2012)

    Article  Google Scholar 

  21. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995) (Second Extended Edition 1997)

    Book  Google Scholar 

  22. Kolmogorov, A., Fomin, S.: Reelle Funktionen und Funktionalanalysis. VEB Deutscher Verlag der Wissenschaften, Berlin (1975)

    MATH  Google Scholar 

  23. Kulis, B., Sustik, M., Dhillon, I.: Low-rank kernel learning with Bregman matrix divergences. Journal of Machine Learning Research 10, 341–376 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical Statistics 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, A., Smith, N., Xing, E., Aguiar, P., Figueiredo, M.: Nonextensive information theoretic kernels on measures. Journal of Machine Learning Research 10, 935–975 (2009)

    Google Scholar 

  26. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  27. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209, 415–446 (1909)

    Article  MATH  Google Scholar 

  28. Micchelli, C., Xu, Y., Zhang, H.: Universal kernels. Journal of Machine Learning Research 7, 26051–22667 (2006)

    Google Scholar 

  29. Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J., Quinn, J., Haase, S., Villmann, T., Biehl, M.: Divergence based classification in learning vector quantization. Neurocomputing 74(9), 1429–1435 (2011)

    Article  Google Scholar 

  30. Nielsen, F., Nock, R.: Sided and symmetrized Bregman centroids. IEEE Transaction on Information Theory 55(6), 2882–2903 (2009)

    Article  MathSciNet  Google Scholar 

  31. Österreicher, F., Vajda, I.: A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55(3), 639–653 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific (2006)

    Google Scholar 

  33. Principe, J.: Information Theoretic Learning. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  34. Qin, A., Suganthan, P.: A novel kernel prototype-based learning algorithm. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 4, pp. 621–624 (2004)

    Google Scholar 

  35. Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to cluster analysis. In: ICPR (4), pp. 617–620 (2004)

    Google Scholar 

  36. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press (1961)

    Google Scholar 

  37. Rényi, A.: Probability Theory. North-Holland Publishing Company, Amsterdam (1970)

    Google Scholar 

  38. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  39. Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423–429. MIT Press (1995)

    Google Scholar 

  40. Schleif, F.-M., Villmann, T., Hammer, B., Schneider, P.: Efficient kernelized prototype based classification. International Journal of Neural Systems 21(6), 443–457 (2011)

    Article  Google Scholar 

  41. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  42. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scovel, C., Hush, D., Steinwart, I., Theiler, J.: Radial kernels and their reproducing kernel Hilbert spaces. Journal of Complexity 26, 641–660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–432 (1948)

    MathSciNet  MATH  Google Scholar 

  45. Sriperumbudur, B., Fukumizu, K., Lanckriet, G.: Universality, characteristic kernels, and RKHS embedding of measures. Journal of Machine Learning Research 12, 2389–2410 (2011)

    MathSciNet  Google Scholar 

  46. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2, 67–93 (2001)

    MathSciNet  Google Scholar 

  47. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Villmann, T., Haase, S.: A note on gradient based learning in vector quantization using differentiable kernels for Hilbert and Banach spaces. Machine Learning Reports 6(MLR-02-2012), 1–29 (2012) ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_02_2012.pdf ,

  49. Zhang, H., Xu, Y., Zhang, J.: Reproducing kernel banach spaces for machine learning. Journal of Machine Learning Research 10, 2741–2775 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villmann, T., Haase, S., Kästner, M. (2013). Gradient Based Learning in Vector Quantization Using Differentiable Kernels. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics