Skip to main content

Estimation of Visual Feedback Contribution to Limb Stiffness in Visuomotor Control

  • Conference paper
Book cover Brain Informatics (BI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7670))

Included in the following conference series:

Abstract

The purpose of this work was to investigate contribution of a visual feedback system to limb stiffness. It is difficult to differentiate the visual component from others out of measured data obtained by applying a force perturbation, which is required to estimate stiffness,. In this study, we proposed an experimental procedure consisted of a pair of tasks to investigate the visual feedback component, and showed it as end-point stiffness ellipses at several timings of a movement. In addition, we carried out a numerical simulation of the movement with the perturbation in according with a framework of optimal feedback control model. As results, long axes of the stiffness ellipses of the visual component were modulated to the movement directions and the simulation showed that a positional feedback gain was exponentially increased toward a movement end. Consequently, the visual feedback system is supposed to regulate compliance of a movement direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saijo, N., Gomi, H.: Multiple motor learning strategies in visuomotor rotation. PLoS One 5, e9399 (2010)

    Google Scholar 

  2. Izawa, J., Shadmehr, R.: On-line processing of uncertain information in visuomotor control. J. Neurosci. 28, 11360–11368 (2008)

    Article  Google Scholar 

  3. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002)

    Article  Google Scholar 

  4. Todorov, E.: Optimality principles in sensorimotor control (review). Nature Neuroscience 7, 907 (2004)

    Article  Google Scholar 

  5. Liu, D., Todorov, E.: Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J. Neurosci. 27, 9354–9368 (2007)

    Article  Google Scholar 

  6. Izawa, J., Shadmehr, R.: Learning from Sensory and Reward Prediction Errors during Motor Adaptation. PLoS Computational Biology 7, e1002012 (2011)

    Google Scholar 

  7. Izawa, J., Rane, T., Donchin, O., Shadmehr, R.: Motor adaptation as a process of reoptimization. J. Neurosci. 28, 2883–2891 (2008)

    Article  Google Scholar 

  8. Nagengast, A.J., Braun, D.A., Wolpert, D.M.: Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Comput. Biol. 5, e1000419 (2009)

    Google Scholar 

  9. Ueyama, Y., Miyashita, E.: Cocontraction of Pairs of Muscles around Joints Improve an Accuracy of a Reaching Movement: a Numerical Simulation Study. In: 2011 International Symposium on Computational Models for Life Sciences (CMLS 2011), pp. 73–82. American Institute of Physics (2011)

    Google Scholar 

  10. Pruszynski, J.A., Kurtzer, I., Scott, S.H.: Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J. Neurophysiol. 100, 224–238 (2008)

    Article  Google Scholar 

  11. Pruszynski, J.A., Kurtzer, I., Nashed, J.Y., Omrani, M., Brouwer, B., Scott, S.H.: Primary motor cortex underlies multi-joint integration for fast feedback control. Nature, 387–390 (2011)

    Google Scholar 

  12. Ueyama, Y., Miyashita, E.: A Numerical Simulation Using Optimal Control Can Estimate Stiffness Profiles of a Monkey Arm During Reaching Movements. In: Conf. Proc IEEE The 12th International Workshop on Advanced Motion Control, pp. 1–6 (Year)

    Google Scholar 

  13. Winter, D.A.: Biomechanics and motor control of human movement. John Wiley & Sons Inc. (2009)

    Google Scholar 

  14. Slifkin, A.B., Newell, K.M.: Variability and noise in continuous force production. Journal of Motor Behavior 32, 141–150 (2000)

    Article  Google Scholar 

  15. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  Google Scholar 

  16. Crevecoeur, F., McIntyre, J., Thonnard, J.L., Lefevre, P.: Movement stability under uncertain internal models of dynamics. Journal of Neurophysiology 104, 1301–1313 (2010)

    Article  Google Scholar 

  17. Gawthrop, P., Loram, I., Lakie, M., Gollee, H.: Intermittent control: A computational theory of human control. Biological Cybernetics, 1–21 (2011)

    Google Scholar 

  18. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol. 81, 2140–2155 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ueyama, Y., Miyashita, E. (2012). Estimation of Visual Feedback Contribution to Limb Stiffness in Visuomotor Control. In: Zanzotto, F.M., Tsumoto, S., Taatgen, N., Yao, Y. (eds) Brain Informatics. BI 2012. Lecture Notes in Computer Science(), vol 7670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35139-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35139-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35138-9

  • Online ISBN: 978-3-642-35139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics