Skip to main content

Goal Directed Therapy: A Review

  • Chapter

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

The issue of hemodynamic optimization has attracted increasing interest over the last two decades, following publication of several studies that have suggested beneficial effects of so called “goal-directed therapy” on patient outcomes. Whereas in the past large volumes of crystalloids were administered in order to replace an ambiguous ‘third space loss’ [1], delivering an individually adapted amount of fluids based on advanced hemodynamic monitoring should now be considered standard of care [2]. The main goal of this individually tailored therapy is an optimal oxygen supply to the vital organs in critical situations, such as high-risk surgery, critical illness or post-cardiac arrest syndrome. Oxygen delivery (DO2) depends on oxygen transport capacity, which in turn is determined by the hemoglobin concentration, its saturation with oxygen and cardiac output. Consequently, therapy is based on optimization of cardiac function with its key determinants preload, contractility and afterload.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jacob M, Chappell D, Rehm M (2009) The “third space” – fact or fiction? Best Pract Res Clin Anaesthesiol 23:145–157

    Article  PubMed  Google Scholar 

  2. Michard F (2011) The burden of high-risk surgery and the potential benefit of goal-directed strategies. Crit Care 15:447

    Article  PubMed  Google Scholar 

  3. Reuter DA (2012) Pragmatic fluid optimization in high-risk surgery patients: when pragmatism dilutes the benefits. Crit Care 16:106

    Article  PubMed  Google Scholar 

  4. Bailey AG, McNaull PP, Jooste E, Tuchman JB (2010) Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg 110:375–390

    Article  PubMed  Google Scholar 

  5. Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR (1990) Postoperative fluid overload: not a benign problem. Crit Care Med 18:728–733

    Article  PubMed  CAS  Google Scholar 

  6. Holte K, Jensen P, Kehlet H (2003) Physiologic effects of intravenous fluid administration in healthy volunteers. Anesth Analg 96:1504–1509

    Article  PubMed  Google Scholar 

  7. Holte K, Foss NB, Andersen J et al (2007) Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth 99:500–508

    Article  PubMed  CAS  Google Scholar 

  8. Bundgaard-Nielsen M, Secher NH, Kehlet H (2009) “Liberal” vs. “restrictive” perioperative fluid therapy – a critical assessment of the evidence. Acta Anaesthesiol Scand 53:843–851

    Article  PubMed  CAS  Google Scholar 

  9. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  10. Berlauk JF, Abrams JH, Gilmour IJ, O’Connor SR, Knighton DR, Cerra FB (1991) Preoperative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. A prospective, randomized clinical trial. Ann Surg 214:289–297

    Article  PubMed  CAS  Google Scholar 

  11. Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  12. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  13. Godje O, Hoke K, Goetz AE et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  PubMed  Google Scholar 

  14. Linton NW, Linton RA (2001) Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86:486–496

    Article  PubMed  CAS  Google Scholar 

  15. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  CAS  Google Scholar 

  16. Cecconi M, Fasano N, Langiano N et al (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15:R132

    Article  PubMed  Google Scholar 

  17. Bein B, Meybohm P, Cavus E et al (2007) The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg 105:107–113

    Article  PubMed  Google Scholar 

  18. Gruenewald M, Meybohm P, Renner J et al (2011) Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output. Crit Care 15:R22

    Article  PubMed  Google Scholar 

  19. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315:909–912

    Article  PubMed  CAS  Google Scholar 

  20. Wakeling HG, McFall MR, Jenkins CS et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95:634–642

    Article  PubMed  CAS  Google Scholar 

  21. Brady M, Kinn S, Stuart P (2003) Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev :

    Google Scholar 

  22. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  23. Renner J, Cavus E, Meybohm P et al (2007) Stroke volume variation during hemorrhage and after fluid loading: impact of different tidal volumes. Acta Anaesthesiol Scand 51:538–544

    Article  PubMed  CAS  Google Scholar 

  24. Renner J, Gruenewald M, Quaden R et al (2009) Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med 37:650–658

    Article  PubMed  Google Scholar 

  25. Renner J, Meybohm P, Hanss R, Gruenewald M, Scholz J, Bein B (2009) Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model. Paediatr Anaesth 19:688–694

    Article  PubMed  Google Scholar 

  26. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  27. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  28. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  Google Scholar 

  29. Gurgel ST, do Nascimento Jr P (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391

    Article  PubMed  Google Scholar 

  30. Moonesinghe SR, Mythen MG, Grocott MP (2011) High-risk surgery: epidemiology and outcomes. Anesth Analg 112:891–901

    Article  PubMed  Google Scholar 

  31. Lee TH, Marcantonio ER, Mangione CM et al (1999) Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 100:1043–1049

    Article  PubMed  CAS  Google Scholar 

  32. Boersma E, Kertai MD, Schouten O et al (2005) Perioperative cardiovascular mortality in noncardiac surgery: validation of the Lee cardiac risk index. Am J Med 118:1134–1141

    Article  PubMed  Google Scholar 

  33. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N (2011) Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care 15:R154

    Article  PubMed  Google Scholar 

  34. Giglio MT, Marucci M, Testini M, Brienza N (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646

    Article  PubMed  CAS  Google Scholar 

  35. Brienza N, Giglio MT, Marucci M, Fiore T (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090

    Article  PubMed  Google Scholar 

  36. Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM (2012) Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 114:640–651

    Article  PubMed  Google Scholar 

  37. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  38. Poeze M, Greve JW, Ramsay G (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care 9:R771–779

    Article  PubMed  Google Scholar 

  39. Rahbari NN, Zimmermann JB, Schmidt T, Koch M, Weigand MA, Weitz J (2009) Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg 96:331–341

    Article  PubMed  CAS  Google Scholar 

  40. Takala J, Ruokonen E, Tenhunen JJ, Parviainen I, Jakob SM (2011) Early non-invasive cardiac output monitoring in hemodynamically unstable intensive care patients: a multi-center randomized controlled trial. Crit Care 15:R148

    Article  PubMed  Google Scholar 

  41. Leslie K, Absalom A, Kenny GN (2002) Closed loop control of sedation for colonoscopy using the Bispectral Index. Anaesthesia 57:693–697

    Article  PubMed  CAS  Google Scholar 

  42. Liu N, Chazot T, Hamada S et al (2011) Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg 112:546–557

    Article  PubMed  CAS  Google Scholar 

  43. Rinehart J, Liu N, Alexander B, Cannesson M (2012) Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization? Anesth Analg 114:130–143

    Article  PubMed  Google Scholar 

  44. Bardossy G, Halasz G, Gondos T (2011) The diagnosis of hypovolemia using advanced statistical methods. Comput Biol Med 41:1022–1032

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gruenewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruenewald, M., Bein, B. (2013). Goal Directed Therapy: A Review. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics