Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1417 Accesses

Abstract

In the current study, an attributional LCA approach was applied. As indicated in the introduction, LCA is a systems analysis approach, assessing the environmental aspects and impacts of product or service systems over their whole life cycle in accordance with the stated goal and scope of the study. Definition of the goal and scope is therefore the basis for all LCAs. In this chapter, the goal and scope for the LCA models presented in this thesis are set out together with discussion of specific aspects of the data development undertaken in order to address the study scope. In the current research, the LCA models were developed using primary inventory collected from industrial sources combined with new data derived from laboratory experiments and computer simulations supplemented with secondary data from publicly available sources. This chapter presents the general materials and methodologies (including modelling and experimental methodologies) adopted throughout the research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer AG, Spielmann M (2004) Overview and methodology

    Google Scholar 

  2. Angelidaki I, Alves M, Bolzonella D, Borzacconim L, Guwy AJ, Kalyuzhnyi S, Jenicek P, Campos L, Van lier JB (2008) Defining the biomethane potential (BMP) of solid organic wastes: a proposed protocol for batch assays. In:. 5th International symposium of anaerobic digestion of solid waste and energy crops, Hammamet, Tunisia

    Google Scholar 

  3. APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  4. Barikmo I, Ouattara F, Oshaug A (2003) Protein, carbohydrate and fibre in cereals from mali—how to fit the results in a food composition table and database. In: 5th International food data conference/27th national nutrient databank conference, Jun 30–Jul 03 2003. Academic Press Inc Elsevier Science, Washington, pp 291–300

    Google Scholar 

  5. Barlaz MA, Eleazer WE, Odle WS, Qian IX, Wang Y-S (1997) Biodegradative analysis of municipal solid waste in laboratory-scale landfills, EPA

    Google Scholar 

  6. Baumgartner CE (1987) Spectrophotometric determination of poly(vinyl alcohol) in cadmium hydroxide pastes. Anal Chem 59:2716–2718

    Article  CAS  Google Scholar 

  7. Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  CAS  Google Scholar 

  8. Benson J, Fleishman JA (1994) The robustness of maximum-likelihood and distribution-free estimators to nonnormality in confirmatory factor-analysis. Qual Quant 28:117–136

    Article  Google Scholar 

  9. Björklund A (2002) Survey of approaches to improve reliability in LCA. Int J Life Cycle Assess 7:64–72

    Article  Google Scholar 

  10. Boustead I (2005a) Eco-profiles of the european plastics industry. Pastics Europe (association of plastics manufacturers)

    Google Scholar 

  11. Boustead I (2005b) Eco-profiles of the European plastics industry—methodology. In: Manufactuers AOP Plastic Europe

    Google Scholar 

  12. Brown L, Armstrong Brown S, Jarvis SC, Syed B, Goulding KWT, Phillips VR, Sneath RW, Pain BF (2001) An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis. Atmos Environ 35:1439–1449

    Google Scholar 

  13. Brown L, Syed B, Jarvis SC, Sneath RW, Phillips VR, Goulding KWT, Li C (2002) Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmos Environ 36:917–928

    Article  CAS  Google Scholar 

  14. BSI (2008) PAS 2050: 2008 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. In: Standards B (ed) BSI

    Google Scholar 

  15. CEH (2006) UK deposition maps. Centre Ecol Hydro

    Google Scholar 

  16. CEH (2009) UK pollution and deposition. Center Ecol Hydro

    Google Scholar 

  17. Cordek (2009a) Formwork solutions [Online]. Available: http://www.cordek.com/docs/Formwork%20Solutions%20Brochure%20-%20April%202007.pdf. Accessed Oct 25 2009

  18. Cordek (2009b) Trough moulds for in situ ribbed floors [Online]. Available: http://cordek.com/docs/New%20Trough%20Brochure%20-%20final!.pdf. Accessed Oct 25 2009

  19. Delia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764

    Article  CAS  Google Scholar 

  20. Derwent RG, Jenkin ME, Saunders SM (1996) Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos Environ 30:181–199

    Article  CAS  Google Scholar 

  21. Derwent RG, Jenkin ME, Saunders SM, Pilling MJ (1998) Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos Environ 32:2429–2441

    Article  CAS  Google Scholar 

  22. DTI (2007) Energy and commodity balances, conversion factors and calorific values. DTI

    Google Scholar 

  23. Dupont FA, Samoil V, Chan R (2008) Extraction of up to 95 % of wheat (Triticum aestivum) flour protein using warm sodium dodecyl sulfate (SDS) without reduction or sonication. J Agri Food Chem 56:7431–7438

    Article  CAS  Google Scholar 

  24. ECN (2007) Phyllis, database for biomass and waste. Energy research Centre of the Netherlands

    Google Scholar 

  25. Fefco GE (2006) European database for corrugated board life cycle studies

    Google Scholar 

  26. Finch CA (1992) Polyvinyl alcohol-developments. Wiley, Chichester, England

    Google Scholar 

  27. Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  28. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang S-W (2001) Climate change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (ed) Cambridge University Press, Cambridge, United Kingdom and New York

    Google Scholar 

  29. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York

    Google Scholar 

  30. Francou C, Lineres M, Derenne S, Le Villio-Poitrenaud M, Houot S (2008) Influence of green waste, biowaste and paper-cardboard initial ratios on organic matter transformations during composting. Bioresour Technol 99:8926–8934

    Article  CAS  Google Scholar 

  31. Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M, Wernet G (2007) Overview and methodology ecoinvent report No.1: swiss center for life cycle inventories, Dubendorf

    Google Scholar 

  32. Goulding K (2008) Atmospheric CO2 and NH3 concentration for modeling work. Personal communication, London

    Google Scholar 

  33. Grosser ZA, Davidowski LJ, WEE P (2009) The analysis of biodiesel for inorganic contaminants including sulfur by ICP-OES

    Google Scholar 

  34. Guinée JB, Gorree M, Heijungs R, Huppes G, Kleijn R, Koning A, Oers LV, Sleeswijk AW, Suh S, Haes HAU, Bruijn H, Duin RV, Huijbregts MAJ (2001). Life cycle assessment an operational guide to the ISO standards final report (part 1, 2, 3). Ministry of housing, spatial planning and the environment and center of environmental science, Leiden University

    Google Scholar 

  35. Hafez AA, Goyal SS, Rains DW (1991) Quantative determination of total suphur in plant tissue using acid digestion and ion-chromatography. Agri J 83:148–153

    Article  CAS  Google Scholar 

  36. Hames B, Scarlata C, Sluiter A (2005) Laboratory analytical procedure (LAP) determination of protein content in biomass national renewable energy laboratory

    Google Scholar 

  37. Heijungs R, Guinée J, Kleijn R, Rovers V (2007) Bias in normalization: causes, consequences, detection and remedies. Int J Life Cycle Assess 12:211–216

    Google Scholar 

  38. Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, Duin RV, Goede HPD (1992) Environmental life cycle assessment of products guide and backgrounds leiden: center of environmental science

    Google Scholar 

  39. Huijbregts MA (1999) Priority assessment of toxic substances in the frame of LCA-development and application of the multi-media fate, exposure and effect model USES-LCA. Interfaculty department of environmental science faculty of environmental sciences. University of Amsterdam, Amsterdam

    Google Scholar 

  40. Huijbregts MAJ, Breedveld L, Huppes G, de Koning A, van Oers L, Suh S (2003) Normalisation figures for environmental life-cycle assessment: The Netherlands (1997/1998), Western Europe (1995) and the world (1990 and 1995). J Cleaner Prod 11:737–748

    Article  Google Scholar 

  41. Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132

    Article  Google Scholar 

  42. Huijbregts MAJ, Thissen U, Guinee JB, Jager T, Kalf D, van de Meent D, Ragas AMJ, Sleeswijk AW, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41:541–573

    Article  CAS  Google Scholar 

  43. Hurkman WJ, Tanaka CK (2007) Extraction of wheat endosperm proteins for proteome analysis. J Chromatogr B-Anal Technol Biomed Life Sci 849:344–350

    Article  CAS  Google Scholar 

  44. Hutchinson JJ, Grant BB, Smith WN, Desjardins RL, Campbell CA, Worth DE, Verge XP (2006) Estimates of direct nitrous oxide emissions from Canadian agroecosystems and their uncertainties. Can J Soil Sci

    Google Scholar 

  45. Hyman D, Sluiter A, Crocker D, Johnson D, Sluiter J, Black S, Scarlata C (2007) Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy laboratory analytical procedure (LAP)

    Google Scholar 

  46. IIASA (2007) Regional air pollution information and simulation model. Int Inst Appl Syst Anal

    Google Scholar 

  47. Imafidon GI, Sosulski FW (1990) Nonprotein nitrogen contents of animal and plant foods. J Agri Food Chem 38:114–118

    Article  CAS  Google Scholar 

  48. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (ed) National greenhouse gas inventories programme

    Google Scholar 

  49. ISO (1998) ISO 14041 environmental management—life cycle assessment—goal and scope definition and inventory analysis. In: Standardization IOF (ed) British standards institution

    Google Scholar 

  50. ISO (2000a) ISO 14042 environmental management—life cycle assessment—life cycle impact assessment

    Google Scholar 

  51. ISO (2000b) ISO 14049 Environmental Management—Life Cycle Assessment—Examples of Application of ISO 14041 to goal and scope definition and inventory analysis. British Standards Institution, London, UK

    Google Scholar 

  52. Jenkin ME, Hayman GD (1999) Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmos Environ 33:1275–1293

    Article  CAS  Google Scholar 

  53. Jokela JPY, Vavilin VA, Rintala JA (2005) Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation. Bioresour Technol 96:501–508

    Article  CAS  Google Scholar 

  54. Joshi DP, Lanchunfung YL, Pritchard JG (1979) Determination of polyvinyl-alcohol via its complex with boric-acid and iodine. Anal Chim Acta 104:153–160

    Article  CAS  Google Scholar 

  55. Jung S, Rickert DA, Deak NA, Aldin ED, Recknor J, Johnson LA, Murphy PA (2003) Comparison of kjeldahl and dumas methods for determining protein contents of soybean products. J Am Oil Chem Soc 80:1169–1173

    Article  CAS  Google Scholar 

  56. Jungmeier G, Werner F, Jarnehammar A, Hohenthal C, Richter K (2002) Allocation in LCA of wood-based products—experiences of cost action E9 part I. Methodology. Int J Life Cycle Assess 7:290–294

    Article  Google Scholar 

  57. Kalra YP, Maynard DG, Radford FG (1989) Microwave digestion of tree foliage for multi-element analysis. Can J For Res-Revue Canadienne De Recherche Forestiere 19:981–985

    Article  CAS  Google Scholar 

  58. Kamizake NKK, Goncalves MM, Zaia C, Zaia DAM (2003) Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods. J Food Compos Anal 16:507–516

    Article  CAS  Google Scholar 

  59. Kennedy D, Montgomery D, Rollier D, Keats J (1997) Data quality. Int J Life Cycle Assess 2:229–239

    Article  Google Scholar 

  60. Kola H, Perämäkia P, Välimäkib I (2002) Correction of spectral interference of calcium in sulfur determination by inductively coupled plasma optical emission spectrometry using multiple linear regression. J Anal At Spectrom 17:5

    Article  Google Scholar 

  61. Kovacs AB, Prokisch J, Kovacs B, Palencsar AJ, Gyori Z, Loch J (1999) Determination of sulphur in plant extracts by ion chromatograph—hydraulic high-pressure nebulizer Inductively coupled plasma atomic emission spectrometer (IC/HHPN/ICP-AES). Int Symp Soil Plant Anal, Mar 22–26 1999. Marcel Dekker Inc, Brisbane, Australia, pp 1941–1948

    Google Scholar 

  62. Li C, Zhuang Y, Cao M, Crill P, Dai Z, Frolking S, Moore B, Salas W, Song W, Wang X (2001) Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutr Cycl Agroecosyst 60:159–175

    Article  CAS  Google Scholar 

  63. Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276

    Article  CAS  Google Scholar 

  64. Li CS, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlin D (2006) Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa. Ecol Model 196:116–130

    Article  Google Scholar 

  65. Li CS, Frolking S, Frolking TA (1992) A model of nitrous-oxide evolution from soil driven by rainfall events.1. Model structure and sensitivity. J Geophys Res-Atmos 97:9759–9776

    Article  CAS  Google Scholar 

  66. Li CS, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochem Cycles 8:237–254

    Article  CAS  Google Scholar 

  67. Li CS, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles 18:GB1043

    Google Scholar 

  68. Li S-L, Kuo S-C, Lin J-S, Lee Z-K, Wang Y-H, Cheng S–S (2008) Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. Int J Hydrogen Energy 33:1522–1531

    Article  CAS  Google Scholar 

  69. Mariotti F, Tome D, Mirand PP (2008) Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr 48:177–184

    Article  CAS  Google Scholar 

  70. Ministry of Agriculture FAF (1986) The analysis of agricultural materials London, Her majesty’s stationery office

    Google Scholar 

  71. Mortimer ND, Elsayed MA, Horne RE (2004) Energy and greenhouse gas emissions for bioethanol production from wheat grain and sugar beet

    Google Scholar 

  72. Mosse J (1990) Nitrogen to protein conversion factor for 10 cereals and 6 legumes or oilseeds—a reappraisal of its definition and determination—variation according to species and to seed protein-content. J Agri Food Chem 38:18–24

    Article  CAS  Google Scholar 

  73. NSRI (2007) The national soil map and soil classification. National Soil Resources Institute of Cranfield University

    Google Scholar 

  74. National Soil Resources Institute (NSRI) (2009) Full soils site report for location 579609E, 307801 N, 5 x 5 km, Cranfield University

    Google Scholar 

  75. Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492

    Article  CAS  Google Scholar 

  76. Owens JM, Chynoweth DP (1993) Biochemical methane potential of municipal solid-Waste (MSW) components. Water Sci Technol 27:1–14

    CAS  Google Scholar 

  77. Peterson G (1983) Determination of total protein. Methods Enzymol 91:25

    Google Scholar 

  78. Peterson GL (1977) Simplification of protein assay method of lowry et al—which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  Google Scholar 

  79. Porter MA, Jones AM (2003) Variability in soy flour composition. J Am Oil Chem Soc 80:557–562

    Article  CAS  Google Scholar 

  80. Préconsultants (2004) Simapro 7.0 database manual methods library

    Google Scholar 

  81. Purcell LC, King CA (1996) Total nitrogen determination in plant material by persulfate digestion. Agron J 88:111–113

    Article  CAS  Google Scholar 

  82. Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41:1444–1450

    Article  CAS  Google Scholar 

  83. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nature Geosci 1:430–437

    Article  CAS  Google Scholar 

  84. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, London

    Google Scholar 

  85. Rosenbaum R, Bachmann T, Gold L, Huijbregts M, Jolliet O, Juraske R, Koehler A, Larsen H, Macleod M, Margni M, McKone T, Payet J, Schuhmacher M, van de Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  86. Sarwar G, Christensen DA, Finlayson AJ, Friedman M, Hackler LR, Mackenzie SL, Pellett PL, Tkachuk R (1983) Inter-laboratory and intra-laboratory variation in amino-acid-analysis of food proteins. J Food Sci 48:526–531

    Article  CAS  Google Scholar 

  87. Shi J, Ebrik M, Yang B, Wyman CE (2009) The potential of cellulosic ethanol production from municipal solid waste: a technical and economic evaluation. University of California Energy Institute, California

    Google Scholar 

  88. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Colorado

    Google Scholar 

  89. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. National Renewable Energy Laboratory, Colorado

    Google Scholar 

  90. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure. National Renewable Energy Laboratory, Colorado

    Google Scholar 

  91. Smart MM, Rada RG, Donnermeyer GN (1983) Determination of total nitrogen in sediments and plants using persulfate digestion—an evaluation and comparison with the kjeldahl procedure. Water Res 17:1207–1211

    Article  CAS  Google Scholar 

  92. Smart MM, Reid FA, Jones JR (1981) A comparison of a persulfate digestion and the kjeldahl procedure for determination of total nitrogen in fresh-water samples. Water Res 15:919–921

    Article  CAS  Google Scholar 

  93. Soon YK, Kalra YP, Abboud SA (1995) Comparison of some methods for the determination of total sulfur in plant tissues. In: 4th International symposium on soil and plant analysis—quality of soil and plant analysis in view of sustainable agriculture and the environment, Aug 05–10 1995, Marcel Dekker Inc, Wageningen, pp 809–818

    Google Scholar 

  94. Sørum L, Grønli MG, Hustad JE (2001) Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80:1217–1227

    Article  Google Scholar 

  95. Sosulski FW, Imafidon GI (1990) Amino-acid-composition and nitrogen-to-protein conversion factors for animal and plant foods. J Agri Food Chem 38:1351–1356

    Article  CAS  Google Scholar 

  96. Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville

    Google Scholar 

  97. Sugiyama H, Fukushima Y, Hirao M, Hellweg S, Hungerbuhler K (2005) Using standard statistics to consider uncertainty in industry-based life cycle inventory databases. Int J Life Cycle Assess 10:399–405

    Article  Google Scholar 

  98. Tang YS, Dijk NV, Anderson M, Simmons I, Dore AJ, Dragosits U, Bealey WJ, Leaver D, Smith RI, Sutton MA (2008) Analysis of temporal and spatial patterns of NH3 and NH4 + over the UK—2007 Annual report to DEFRA

    Google Scholar 

  99. USDA (2009) Soil texture calculator [Online]. USDA. Available: http://soils.usda.gov/technical/aids/investigations/texture/

  100. USEPA (1995) Guidelines for assessing the quality of life cycle inventory analysis. In: Office of solid waste and us environmental protection agency, w

    Google Scholar 

  101. Wang L (2009) Wavelength and the absorptivity constant of biomass (L/g-cm) for acid-soluble lignin of cardboard. Personal communication

    Google Scholar 

  102. Weidema B (2000) Avoiding co-product allocation in life-cycle assessment. J Ind Ecol 4:11–33

    Article  CAS  Google Scholar 

  103. Weidema BP, Wesnæs MS (1996) Data quality management for life cycle inventories–an example of using data quality indicators. J Cleaner Prod 4:167–174

    Article  Google Scholar 

  104. Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophysics 63:1293–1313

    Article  CAS  Google Scholar 

  105. WMO (2007) Scientific assessment of ozone depletion: 2006 global ozone research and monitoring project—report No. 50. World Meteorological Organization

    Google Scholar 

  106. Yáñez R, Alonso JL, Parajó JC (2004) Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochem 39:1543–1551

    Article  Google Scholar 

  107. Zar JH (1999) Biostatistical analysis. Prentice Hall International Inc, Englewood Cliffs

    Google Scholar 

  108. Zhao F, McGrath SP, Crosland AR (1994) Comparison of 3 wet digestion methods for the determination of plant sulfur by inductively-coupled plasma-atomic emission-spectroscopy (ICPAES). Commun Soil Sci Plant Anal 25:407–418

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, M. (2012). Materials and Methods. In: Life Cycle Assessment (LCA) of Light-Weight Eco-composites. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35037-5_2

Download citation

Publish with us

Policies and ethics