Skip to main content

Controllability of Linear Differential-Algebraic Systems—A Survey

  • Chapter

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

Different concepts related to controllability of differential-algebraic equations are described. The class of systems considered consists of linear differential-algebraic equations with constant coefficients. Regularity, which is, loosely speaking, a concept related to existence and uniqueness of solutions for any inhomogeneity, is not required in this article. The concepts of impulse controllability, controllability at infinity, behavioral controllability, and strong and complete controllability are described and defined in the time domain. Equivalent criteria that generalize the Hautus test are presented and proved.

Special emphasis is placed on normal forms under state space transformation and, further, under state space, input and feedback transformations. Special forms generalizing the Kalman decomposition and Brunovský form are presented. Consequences for state feedback design and geometric interpretation of the space of reachable states in terms of invariant subspaces are proved.

Thomas Berger was supported by DFG grant IL 25/9 and partially supported by the DAAD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis—A Modern Systems Theory Approach. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  3. Aplevich, J.D.: Minimal representations of implicit linear systems. Automatica 21(3), 259–269 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aplevich, J.D.: Implicit Linear Systems. Lecture Notes in Control and Information Sciences, vol. 152. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  5. Armentano, V.A.: Eigenvalue placement for generalized linear systems. Syst. Control Lett. 4, 199–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Armentano, V.A.: The pencil (sEA) and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24, 616–638 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  8. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der mathematischen Wissenschaften, vol. 264. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  9. Aubin, J.P., Frankowska, H.: Set Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  10. Augustin, F., Rentrop, P.: Numerical methods and codes for differential algebraic equations. In: Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, vol. 2. Springer, Berlin (2012)

    Google Scholar 

  11. Banaszuk, A., Przyłuski, K.M.: On perturbations of controllable implicit linear systems. IMA J. Math. Control Inf. 16, 91–102 (1999)

    Article  MATH  Google Scholar 

  12. Banaszuk, A., Kociȩcki, M., Przyłuski, K.M.: On Hautus-type conditions for controllability of implicit linear discrete-time systems. Circuits Syst. Signal Process. 8(3), 289–298 (1989)

    Article  MATH  Google Scholar 

  13. Banaszuk, A., Kociȩcki, M., Przyłuski, K.M.: Implicit linear discrete-time systems. Math. Control Signals Syst. 3(3), 271–297 (1990)

    Article  MATH  Google Scholar 

  14. Banaszuk, A., Kociȩcki, M., Przyłuski, K.M.: Kalman-type decomposition for implicit linear discrete-time systems, and its applications. Int. J. Control 52(5), 1263–1271 (1990)

    Article  MATH  Google Scholar 

  15. Banaszuk, A., Kociȩcki, M., Lewis, F.L.: Kalman decomposition for implicit linear systems. IEEE Trans. Autom. Control 37(10), 1509–1514 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  17. Belevitch, V.: Classical Network Theory. Holden-Day, San Francisco (1968)

    MATH  Google Scholar 

  18. Belur, M., Trentelman, H.: Stabilization, pole placement and regular implementability. IEEE Trans. Autom. Control 47(5), 735–744 (2002)

    Article  MathSciNet  Google Scholar 

  19. Bender, D.J., Laub, A.J.: Controllability and observability at infinity of multivariable linear second-order models. IEEE Trans. Autom. Control AC-30, 1234–1237 (1985)

    Article  MathSciNet  Google Scholar 

  20. Bender, D.J., Laub, A.J.: The linear-quadratic optimal regulator for descriptor systems. In: Proc. 24th IEEE Conf. Decis. Control, Ft. Lauderdale, FL, pp. 957–962 (1985)

    Google Scholar 

  21. Bender, D., Laub, A.: The linear quadratic optimal regulator problem for descriptor systems. IEEE Trans. Autom. Control 32, 672–688 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Berger, T., Trenn, S.: The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal. Appl. 33(2), 336–368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Berger, T., Trenn, S.: Addition to: “The quasi-Kronecker form for matrix pencils”. SIAM J. Matrix Anal. Appl. 34(1), 94–101 (2013). doi:10.1137/120883244

    Article  Google Scholar 

  24. Berger, T., Ilchmann, A., Reis, T.: Normal forms, high-gain, and funnel control for linear differential-algebraic systems. In: Biegler, L.T., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints. Advances in Design and Control, vol. 23, pp. 127–164. SIAM, Philadelphia (2012)

    Chapter  Google Scholar 

  25. Berger, T., Ilchmann, A., Reis, T.: Zero dynamics and funnel control of linear differential-algebraic systems. Math. Control Signals Syst. 24(3), 219–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils. Linear Algebra Appl. 436(10), 4052–4069 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bernhard, P.: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20(5), 612–633 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Birkhoff, G., MacLane, S.: A Survey of Modern Algebra, 4th edn. Macmillan Publishing Co., New York (1977)

    MATH  Google Scholar 

  29. Bonilla Estrada, M., Malabre, M.: On the control of linear systems having internal variations. Automatica 39, 1989–1996 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bonilla, M., Malabre, M., Loiseau, J.J.: Implicit systems reachability: a geometric point of view. In: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 4270–4275 (2009)

    Google Scholar 

  31. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  32. Brunovský, P.: A classification of linear controllable systems. Kybernetika 3, 137–187 (1970)

    Google Scholar 

  33. Bunse-Gerstner, A., Mehrmann, V., Nichols, N.K.: On derivative and proportional feedback design for descriptor systems. In: Kaashoek, M.A., et al. (eds.) Proceedings of the International Symposium on the Mathematical Theory of Networks and Systems, Amsterdam, Netherlands (1989)

    Google Scholar 

  34. Bunse-Gerstner, A., Mehrmann, V., Nichols, N.K.: Regularization of descriptor systems by derivative and proportional state feedback. Report, University of Reading, Dept. of Math., Numerical Analysis Group, Reading, UK (1991)

    Google Scholar 

  35. Byers, R., Kunkel, P., Mehrmann, V.: Regularization of linear descriptor systems with variable coefficients. SIAM J. Control Optim. 35, 117–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Calahan, D.A.: Computer-Aided Network Design. McGraw-Hill, New York (1972). Rev. edn

    Google Scholar 

  37. Campbell, S.L.: Singular Systems of Differential Equations I. Pitman, New York (1980)

    Google Scholar 

  38. Campbell, S.L.: Singular Systems of Differential Equations II. Pitman, New York (1982)

    MATH  Google Scholar 

  39. Campbell, S.L., Carl, D., Meyer, J., Rose, N.J.: Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math. 31(3), 411–425 (1976). http://link.aip.org/link/?SMM/31/411/1. doi:10.1137/0131035

    Article  MathSciNet  MATH  Google Scholar 

  40. Campbell, S.L., Nichols, N.K., Terrell, W.J.: Duality, observability, and controllability for linear time-varying descriptor systems. Circuits Syst. Signal Process. 10(4), 455–470 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Christodoulou, M.A., Paraskevopoulos, P.N.: Solvability, controllability, and observability of singular systems. J. Optim. Theory Appl. 45, 53–72 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cobb, J.D.: Descriptor Variable and Generalized Singularly Perturbed Systems: A Geometric Approach. Univ. of Illinois, Dept. of Electrical Engineering, Urbana-Champaign (1980)

    Google Scholar 

  43. Cobb, J.D.: Feedback and pole placement in descriptor variable systems. Int. J. Control 33(6), 1135–1146 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cobb, J.D.: On the solution of linear differential equations with singular coefficients. J. Differ. Equ. 46, 310–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Cobb, J.D.: Descriptor variable systems and optimal state regulation. IEEE Trans. Autom. Control AC-28, 601–611 (1983)

    Article  MathSciNet  Google Scholar 

  46. Cobb, J.D.: Controllability, observability and duality in singular systems. IEEE Trans. Autom. Control AC-29, 1076–1082 (1984)

    Article  MathSciNet  Google Scholar 

  47. Crouch, P.E., van der Schaft, A.J.: Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences, vol. 101. Springer, Berlin (1986)

    Google Scholar 

  48. Cuthrell, J.E., Biegler, L.T.: On the optimization of differential-algebraic process systems. AIChE J. 33(8), 1257–1270 (1987)

    Article  MathSciNet  Google Scholar 

  49. Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  50. Daoutidis, P.: DAEs in chemical engineering: a survey. In: Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, vol. 2. Springer, Berlin (2012)

    Google Scholar 

  51. Diehla, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgöwer, F., Bock, H.G., Bürner, T., Gilles, E.D., Kienle, A., Schlöder, J.P., Stein, E.: Real-time optimization for large scale processes: nonlinear model predictive control of a high purity distillation column. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems: State of the Art, pp. 363–384. Springer, Berlin (2001)

    Chapter  Google Scholar 

  52. Diehla, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagyc, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12, 577–585 (2002)

    Article  Google Scholar 

  53. Dieudonné, J.: Sur la réduction canonique des couples des matrices. Bull. Soc. Math. Fr. 74, 130–146 (1946)

    MATH  Google Scholar 

  54. Dziurla, B., Newcomb, R.W.: Nonregular Semistate Systems: Examples and Input-Output Pairing. IEEE Press, New York (1987)

    Google Scholar 

  55. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  56. Eliopoulou, H., Karcanias, N.: Properties of reachability and almost reachability subspaces of implicit systems: the extension problem. Kybernetika 31(6), 530–540 (1995)

    MathSciNet  MATH  Google Scholar 

  57. Fletcher, L.R., Kautsky, J., Nichols, N.K.: Eigenstructure assignment in descriptor systems. IEEE Trans. Autom. Control AC-31, 1138–1141 (1986)

    Article  Google Scholar 

  58. Frankowska, H.: On controllability and observability of implicit systems. Syst. Control Lett. 14, 219–225 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Führer, C., Leimkuhler, B.J.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math. 59, 55–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gantmacher, F.R.: The Theory of Matrices, vols. I & II. Chelsea, New York (1959)

    MATH  Google Scholar 

  61. Geerts, A.H.W.T.: Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant linear systems: the general case. Linear Algebra Appl. 181, 111–130 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  62. Geerts, A.H.W.T., Mehrmann, V.: Linear differential equations with constant coefficients: a distributional approach. Tech. Rep. SFB 343 90-073, Bielefeld University, Germany (1990)

    Google Scholar 

  63. Glüsing-Lüerßen, H.: Feedback canonical form for singular systems. Int. J. Control 52(2), 347–376 (1990)

    Article  MATH  Google Scholar 

  64. Glüsing-Lüerßen, H., Hinrichsen, D.: A Jordan control canonical form for singular systems. Int. J. Control 48(5), 1769–1785 (1988)

    Article  MATH  Google Scholar 

  65. Gresho, P.M.: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413–453 (1991)

    Article  MathSciNet  Google Scholar 

  66. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik, vol. 88. Teubner, Leipzig (1986)

    MATH  Google Scholar 

  67. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  68. Hautus, M.L.J.: Controllability and observability condition for linear autonomous systems. Proc. Ned. Akad. Wet., Ser. A 72, 443–448 (1969)

    MathSciNet  MATH  Google Scholar 

  69. Helmke, U., Shayman, M.A.: A canonical form for controllable singular systems. Syst. Control Lett. 12(2), 111–122 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  70. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005)

    MATH  Google Scholar 

  71. Hou, M.: Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Autom. Control 49(10), 1723–1727 (2004)

    Article  Google Scholar 

  72. Ilchmann, A., Mehrmann, V.: A behavioural approach to time-varying linear systems, Part 1: general theory. SIAM J. Control Optim. 44(5), 1725–1747 (2005)

    Article  MathSciNet  Google Scholar 

  73. Ilchmann, A., Mehrmann, V.: A behavioural approach to time-varying linear systems, Part 2: descriptor systems. SIAM J. Control Optim. 44(5), 1748–1765 (2005)

    Article  MathSciNet  Google Scholar 

  74. Ilchmann, A., Nürnberger, I., Schmale, W.: Time-varying polynomial matrix systems. Int. J. Control 40(2), 329–362 (1984)

    Article  MATH  Google Scholar 

  75. Ishihara, J.Y., Terra, M.H.: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Autom. Control 46(6), 991–994 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  76. Isidori, A.: Nonlinear Control Systems, 3rd edn. Communications and Control Engineering Series. Springer, Berlin (1995)

    MATH  Google Scholar 

  77. Isidori, A.: Nonlinear Control Systems II. Communications and Control Engineering Series. Springer, London (1999)

    Book  MATH  Google Scholar 

  78. Jaffe, S., Karcanias, N.: Matrix pencil characterization of almost (A,B)-invariant subspaces: a classification of geometric concepts. Int. J. Control 33(1), 51–93 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  79. Julius, A., van der Schaft, A.: Compatibility of behavioral interconnections. In: Proc. 7th European Control Conf. 2003, Cambridge, UK (2003)

    Google Scholar 

  80. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  81. Kalman, R.E.: On the general theory of control systems. In: Proceedings of the First International Congress on Automatic Control, Moscow, 1960, pp. 481–493. Butterworth’s, London (1961)

    Google Scholar 

  82. Kalman, R.E.: Canonical structure of linear dynamical systems. Proc. Natl. Acad. Sci. USA 48(4), 596–600 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  83. Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM J. Control Optim. 1, 152–192 (1963)

    MathSciNet  MATH  Google Scholar 

  84. Karcanias, N.: Regular state-space realizations of singular system control problems. In: Proc. 26th IEEE Conf. Decis. Control, Los Angeles, CA, pp. 1144–1146 (1987)

    Chapter  Google Scholar 

  85. Karcanias, N., Hayton, G.E.: Generalised autonomous dynamical systems, algebraic duality and geometric theory. In: Proc. 8th IFAC World Congress, Kyoto, 1981, vol. III, pp. 13–18 (1981)

    Google Scholar 

  86. Karcanias, N., Kalogeropoulos, G.: A matrix pencil approach to the study of singular systems: algebraic and geometric aspects. In: Proc. Int. Symp. on Singular Systems, Atlanta, GA, pp. 29–33 (1987)

    Google Scholar 

  87. Karcanias, N., Kalogeropoulos, G.: Geometric theory and feedback invariants of generalized linear systems: a matrix pencil approach. Circuits Syst. Signal Process. 8(3), 375–397 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  88. Karcanias, N., Kouvaritakis, B.: The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach. Int. J. Control 30(3), 395–415 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  89. Knobloch, H.W., Kwakernaak, H.: Lineare Kontrolltheorie. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  90. Koumboulis, F.N., Mertzios, B.G.: On Kalman’s controllability and observability criteria for singular systems. Circuits Syst. Signal Process. 18(3), 269–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  91. Kouvaritakis, B., MacFarlane, A.G.J.: Geometric approach to analysis and synthesis of system zeros Part 1. Square systems. Int. J. Control 23(2), 149–166 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  92. Kouvaritakis, B., MacFarlane, A.G.J.: Geometric approach to analysis and synthesis of system zeros Part 2. Non-square systems. Int. J. Control 23(2), 167–181 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  93. Kronecker, L.: Algebraische Reduction der Schaaren Bilinearer Formen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp. 1225–1237 (1890)

    Google Scholar 

  94. Kučera, V., Zagalak, P.: Fundamental theorem of state feedback for singular systems. Automatica 24(5), 653–658 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  95. Kuijper, M.: First-Order Representations of Linear Systems. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  96. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)

    Book  MATH  Google Scholar 

  97. Kunkel, P., Mehrmann, V., Rath, W.: Analysis and numerical solution of control problems in descriptor form. Math. Control Signals Syst. 14, 29–61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  98. Lamour, R., März, R., Tischendorf, C.: Differential Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum, vol. 1. Springer, Heidelberg (2012)

    Google Scholar 

  99. Lewis, F.L.: A survey of linear singular systems. IEEE Proc., Circuits Syst. Signal Process. 5(1), 3–36 (1986)

    Article  MATH  Google Scholar 

  100. Lewis, F.L.: A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28(1), 119–137 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  101. Lewis, F.L., Özçaldiran, K.: Reachability and controllability for descriptor systems. In: Proc. 27, Midwest Symp. on Circ. Syst., Morgantown, WV (1984)

    Google Scholar 

  102. Lewis, F.L., Özçaldiran, K.: On the Eigenstructure Assignment of Singular Systems. IEEE Press, New York (1985)

    Google Scholar 

  103. Lewis, F.L., Özçaldiran, K.: Geometric structure and feedback in singular systems. IEEE Trans. Autom. Control AC-34(4), 450–455 (1989)

    Article  Google Scholar 

  104. Loiseau, J.: Some geometric considerations about the Kronecker normal form. Int. J. Control 42(6), 1411–1431 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  105. Loiseau, J., Özçaldiran, K., Malabre, M., Karcanias, N.: Feedback canonical forms of singular systems. Kybernetika 27(4), 289–305 (1991)

    MathSciNet  MATH  Google Scholar 

  106. Lötstedt, P., Petzold, L.R.: Numerical solution of nonlinear differential equations with algebraic constraints I: convergence results for backward differentiation formulas. Math. Comput. 46(174), 491–516 (1986)

    MATH  Google Scholar 

  107. Luenberger, D.G.: Dynamic equations in descriptor form. EEE Trans. Autom. Control AC-22, 312–321 (1977)

    Article  MathSciNet  Google Scholar 

  108. Luenberger, D.G.: Time-invariant descriptor systems. Automatica 14, 473–480 (1978)

    Article  MATH  Google Scholar 

  109. Luenberger, D.G.: Introduction to Dynamic Systems: Theory, Models and Applications. Wiley, New York (1979)

    MATH  Google Scholar 

  110. Luenberger, D.G.: Nonlinear descriptor systems. J. Econ. Dyn. Control 1, 219–242 (1979)

    MathSciNet  Google Scholar 

  111. Luenberger, D.G., Arbel, A.: Singular dynamic Leontief systems. Econometrica 45, 991–995 (1977)

    Article  MATH  Google Scholar 

  112. Malabre, M.: More Geometry About Singular Systems. IEEE Press, New York (1987)

    Google Scholar 

  113. Malabre, M.: Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. 122–124, 591–621 (1989)

    Article  MathSciNet  Google Scholar 

  114. Masubuchi, I.: Stability and stabilization of implicit systems. In: Proc. 39th IEEE Conf. Decis. Control, Sydney, Australia, vol. 12, pp. 3636–3641 (2000)

    Google Scholar 

  115. Mertzios, B.G., Christodoulou, M.A., Syrmos, B.L., Lewis, F.L.: Direct controllability and observability time domain conditions of singular systems. IEEE Trans. Autom. Control 33(8), 788–791 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  116. Müller, P.C.: Remark on the solution of linear time-invariant descriptor systems. In: PAMM—Proc. Appl. Math. Mech., GAMM Annual Meeting 2005, Luxemburg, vol. 5, pp. 175–176. Wiley-VCH Verlag GmbH, Weinheim (2005). doi:10.1002/pamm.200510066

    Google Scholar 

  117. Newcomb, R.W.: The semistate description of nonlinear time-variable circuits. IEEE Trans. Circuits Syst. CAS-28, 62–71 (1981)

    Article  MathSciNet  Google Scholar 

  118. Özçaldiran, K.: Control of descriptor systems. Ph.D. thesis, Georgia Institute of Technology (1985)

    Google Scholar 

  119. Özçaldiran, K.: A geometric characterization of the reachable and controllable subspaces of descriptor systems. IEEE Proc., Circuits Syst. Signal Process. 5, 37–48 (1986)

    Article  MATH  Google Scholar 

  120. Özçaldiran, K., Haliločlu, L.: Structural properties of singular systems. Kybernetika 29(6), 518–546 (1993)

    MathSciNet  MATH  Google Scholar 

  121. Özçaldiran, K., Lewis, F.L.: A geometric approach to eigenstructure assignment for singular systems. IEEE Trans. Autom. Control AC-32(7), 629–632 (1987)

    Article  Google Scholar 

  122. Özçaldiran, K., Lewis, F.L.: Generalized reachability subspaces for singular systems. SIAM J. Control Optim. 27, 495–510 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  123. Özçaldiran, K., Lewis, F.L.: On the regularizability of singular systems. IEEE Trans. Autom. Control 35(10), 1156 (1990)

    Article  MATH  Google Scholar 

  124. Pandolfi, L.: Controllability and stabilization for linear systems of algebraic and differential equations. J. Optim. Theory Appl. 30, 601–620 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  125. Pandolfi, L.: On the regulator problem for linear degenerate control systems. J. Optim. Theory Appl. 33, 241–254 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  126. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat. Comput. 9, 213–231 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  127. Petzold, L.R.: Numerical solution of differential-algebraic equations in mechanical systems simulation. Physica D 60, 269–279 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  128. Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory. A Behavioral Approach. Springer, New York (1997)

    MATH  Google Scholar 

  129. Popov, V.M.: Hyperstability of Control Systems. Springer, Berlin (1973). Translation based on a revised text prepared shortly after the publication of the Romanian ed., 1966

    Book  MATH  Google Scholar 

  130. Przyłuski, K.M., Sosnowski, A.M.: Remarks on the theory of implicit linear continuous-time systems. Kybernetika 30(5), 507–515 (1994)

    MathSciNet  MATH  Google Scholar 

  131. Pugh, A.C., Ratcliffe, P.A.: On the zeros and poles of a rational matrix. Int. J. Control 30, 213–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  132. Rabier, P.J., Rheinboldt, W.C.: Classical and generalized solutions of time-dependent linear differential-algebraic equations. Linear Algebra Appl. 245, 259–293 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  133. Rath, W.: Feedback design and regularization for linear descriptor systems with variable coefficients. Dissertation, TU Chemnitz, Chemnitz, Germany (1997)

    Google Scholar 

  134. Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific Publishing, Basel (2008)

    Book  MATH  Google Scholar 

  135. Riaza, R.: DAEs in circuit modelling: a survey. In: Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, vol. 2. Springer, Berlin (2012)

    Google Scholar 

  136. Rosenbrock, H.H.: State Space and Multivariable Theory. Wiley, New York (1970)

    MATH  Google Scholar 

  137. Rosenbrock, H.H.: Structural properties of linear dynamical systems. Int. J. Control 20, 191–202 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  138. Rugh, W.J.: Linear System Theory, 2nd edn. Information and System Sciences Series. Prentice-Hall, New York (1996)

    MATH  Google Scholar 

  139. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  140. Shayman, M.A., Zhou, Z.: Feedback control and classification of generalized linear systems. IEEE Trans. Autom. Control 32(6), 483–490 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  141. Simeon, B., Führer, C., Rentrop, P.: Differential-algebraic equations in vehicle system dynamics. Surv. Math. Ind. 1, 1–37 (1991)

    MATH  Google Scholar 

  142. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  143. Trenn, S.: Distributional differential algebraic equations. Ph.D. thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany (2009). http://www.db-thueringen.de/servlets/DocumentServlet?id=13581

  144. Trenn, S.: Regularity of distributional differential algebraic equations. Math. Control Signals Syst. 21(3), 229–264 (2009). doi:10.1007/s00498-009-0045-4

    Article  MathSciNet  MATH  Google Scholar 

  145. Trenn, S.: Solution concepts for linear DAEs: a survey. In: Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, vol. 2. Springer, Berlin (2013)

    Google Scholar 

  146. Trentelman, H., Willems, J.: The behavioral approach as a paradigm for modelling interconnected systems. Eur. J. Control 9(2–3), 296–306 (2003)

    Article  Google Scholar 

  147. Trentelman, H.L., Stoorvogel, A.A., Hautus, M.: Control Theory for Linear Systems. Communications and Control Engineering. Springer, London (2001)

    Book  Google Scholar 

  148. van der Schaft, A.J.: System Theoretic Descriptions of Physical Systems. CWI Tract, No. 3. CWI, Amsterdam (1984)

    Google Scholar 

  149. van der Schaft, A.J.: Port-Hamiltonian differential-algebraic systems. In: Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum, vol. 2. Springer, Berlin (2012)

    Google Scholar 

  150. van der Schaft, A.J., Schumacher, J.M.H.: The complementary-slackness class of hybrid systems. Math. Control Signals Syst. 9, 266–301 (1996). doi:10.1007/BF02551330

    Article  MATH  Google Scholar 

  151. Verghese, G.C.: Infinite-frequency behavio in generalized dynamical systems. Ph.D. thesis, Stanford University (1978)

    Google Scholar 

  152. Verghese, G.C.: Further notes on singular systems. In: Proc. Joint American Contr. Conf. (1981). Paper TA-4B

    Google Scholar 

  153. Verghese, G.C., Kailath, T.: Eigenvector chains for finite and infinite zeros of rational matrices. In: Proc. 18th Conf. Dec. and Control, Ft. Lauderdale, FL, pp. 31–32 (1979)

    Google Scholar 

  154. Verghese, G.C., Kailath, T.: Impulsive behavior in dynamical systems: structure and significance. In: Dewilde, P. (ed.) Proc. 4th MTNS, pp. 162–168 (1979)

    Google Scholar 

  155. Verghese, G.C., Levy, B.C., Kailath, T.: A generalized state-space for singular systems. IEEE Trans. Autom. Control AC-26(4), 811–831 (1981)

    Article  MathSciNet  Google Scholar 

  156. Wang, C.J.: Controllability and observability of linear time-varying singular systems. IEEE Trans. Autom. Control 44(10), 1901–1905 (1999)

    Article  MATH  Google Scholar 

  157. Wang, C.J., Liao, H.E.: Impulse observability and impulse controllability of linear time-varying singular systems. Automatica 2001(37), 1867–1872 (2001

    Article  Google Scholar 

  158. Weierstraß, K.: Zur Theorie der bilinearen und quadratischen Formen. Berl. Monatsb., pp. 310–338 (1868)

    Google Scholar 

  159. Wilkinson, J.H.: Linear differential equations and Kronecker’s canonical form. In: de Boor, C., Golub, G.H. (eds.) Recent Advances in Numerical Analysis, pp. 231–265. Academic Press, New York (1978)

    Google Scholar 

  160. Willems, J.C.: System theoretic models for the analysis of physical systems. Ric. Autom. 10, 71–106 (1979)

    MathSciNet  Google Scholar 

  161. Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control AC-36(3), 259–294 (1991)

    Article  MathSciNet  Google Scholar 

  162. Willems, J.C.: On interconnections, control, and feedback. IEEE Trans. Autom. Control 42, 326–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  163. Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE Control Syst. Mag. 27(6), 46–99 (2007)

    Article  MathSciNet  Google Scholar 

  164. Wong, K.T.: The eigenvalue problem λTx+Sx. J. Differ. Equ. 16, 270–280 (1974)

    Article  MATH  Google Scholar 

  165. Wonham, W.M.: On pole assignment in multi–input controllable linear systems. IEEE Trans. Autom. Control AC-12, 660–665 (1967)

    Article  Google Scholar 

  166. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach, 3rd edn. Springer, New York (1985)

    Book  MATH  Google Scholar 

  167. Wood, J., Zerz, E.: Notes on the definition of behavioural controllability. Syst. Control Lett. 37, 31–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  168. Yamada, T., Luenberger, D.G.: Generic controllability theorems for descriptor systems. IEEE Trans. Autom. Control 30(2), 144–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  169. Yip, E.L., Sincovec, R.F.: Solvability, controllability and observability of continuous descriptor systems. IEEE Trans. Autom. Control AC-26, 702–707 (1981)

    Article  MathSciNet  Google Scholar 

  170. Zhou, Z., Shayman, M.A., Tarn, T.J.: Singular systems: a new approach in the time domain. IEEE Trans. Autom. Control 32(1), 42–50 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  171. Zubova, S.P.: On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints. Autom. Remote Control 72(1), 23–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to Harry L. Trentelman (University of Groningen) for providing helpful comments on the behavioral approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, T., Reis, T. (2013). Controllability of Linear Differential-Algebraic Systems—A Survey. In: Ilchmann, A., Reis, T. (eds) Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34928-7_1

Download citation

Publish with us

Policies and ethics