Skip to main content

Simulation-Based Analysis of Topology Control Algorithms for Wireless Ad Hoc Networks

  • Conference paper
Book cover Design and Analysis of Algorithms (MedAlg 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7659))

Included in the following conference series:

Abstract

Topology control aims at optimizing throughput and energy consumption of wireless networks by adjusting transmission powers or by restricting the communication to a well-chosen subset of communication links. Over the years, a variety of topology control algorithms have been proposed. However, many of these algorithms have been mainly studied from a theoretical point of view. On the other hand, existing simulation-based studies often only compare few approaches based on rather simple simulations, e.g., abstracting from communication protocols.

In this paper, we present a thorough study of a variety of topology control algorithms based on the methodology of algorithm engineering. To analyze achievable performance improvements for communication according to the IEEE 802.11g standard we use the ns-3 network simulator. In addition to analyzing the communication throughput, we also study the effects of topology control on the energy demand in the network. Based on our simulation results, we then identify properties of the computed topologies that are essential for the achieved improvements. The gained insights are finally used to motivate an extension of the well-known XTC algorithm, which enables significant performance improvements in the considered application scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Network Simulator: ns-3 (2011), http://www.nsnam.org

  2. Buchin, K., Buchin, M.: Topology Control. In: Wagner, D., Wattenhofer, R. (eds.) Algorithms for Sensor and Ad Hoc Networks. LNCS, vol. 4621, pp. 81–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Li, N., Hou, J.C., Sha, L.: Design and analysis of an MST-based topology control algorithm. IEEE Transactions on Wireless Communications 4, 1195–1206 (2005)

    Article  Google Scholar 

  4. Wattenhofer, R., Li, L., Bahl, P., Wang, Y.: Distributed Topology Control for Power Efficient Operation in Multihop Wireless Ad Hoc Networks. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2001), pp. 1388–1397 (2001)

    Google Scholar 

  5. Yao, A.C.C.: On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems. SIAM Journal on Computing 11, 721–736 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Narayanaswamy, S., Kawadia, V., Sreenivas, R.S., Kumar, P.R.: Power Control in Ad-Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol. In: Proceedings of European Wireless 2002. Next Generation Wireless Networks: Technologies, Protocols, Services and Applications, pp. 156–162 (2002)

    Google Scholar 

  7. Wattenhofer, R., Zollinger, A.: XTC: A Practical Topology Control Algorithm for Ad-Hoc Networks. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium - Workshop 12 (IPDPS 2004), p. 216a (2004)

    Google Scholar 

  8. Schweizer, I., Wagner, M., Bradler, D., Mühlhäuser, M., Strufe, T.: kTC - Robust and Adaptive Wireless Ad-hoc Topology Control. In: Proceedings of the IEEE International Conference on Computer Communication Networks, ICCCN 2012 (2012)

    Google Scholar 

  9. Chu, X., Sethu, H.: A New Power-Aware Distributed Topology Control Algorithm for Wireless Ad Hoc Networks. In: Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM 2011 (2011)

    Google Scholar 

  10. Blough, D.M., Leoncini, M., Resta, G., Santi, P.: The K-Neigh Protocol for Symmetric Topology Control in Ad Hoc Networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2003), pp. 141–152. ACM, New York (2003)

    Chapter  Google Scholar 

  11. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52, 2292–2330 (2008)

    Article  Google Scholar 

  12. Li, N., Hou, J.C.: Localized Topology Control Algorithms for Heterogeneous Wireless Networks. IEEE/ACM Transactions on Networking 13, 1313–1324 (2005)

    Article  Google Scholar 

  13. Jeong, J., Culler, D., Oh, J.H.: Empirical Analysis of Transmission Power Control Algorithms for Wireless Sensor Networks. In: Proceedings of the 4th International Conference on Networked Sensing Systems (INSS 2007), pp. 27–32 (2007)

    Google Scholar 

  14. Duran, A., Toril, M., Ruiz, F., Solera, M., Navarro, R.: Analysis of Topology Control Algorithms in Multi-hop Cellular Networks. In: Proceedings of the 5th International Conference on Broadband and Biomedical Communications (IB2Com 2010), pp. 1–6 (2010)

    Google Scholar 

  15. Xu, L., Bo, H., Haixia, L., Mingqiang, Y., Mei, S., Wei, G.: Research and Analysis of Topology Control in ns-2 for Ad-hoc Wireless Network. In: Proceedings of the International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2008), pp. 461–465 (2008)

    Google Scholar 

  16. Gao, Y., Hou, J.C., Nguyen, H.: Topology Control for Maintaining Network Connectivity and Maximizing Network Capacity under the Physical Model. In: Proceedings of the 27th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2008), pp. 1013–1021 (2008)

    Google Scholar 

  17. Niewiadomska-Szynkiewicz, E., Kwaniewski, P., Windyga, I.: Comparative Study of Wireless Sensor Networks Energy-Efficient Topologies and Power Save Protocols. Journal of Telecommunications and Information Technology 3, 68–75 (2009)

    Google Scholar 

  18. Blough, D.M., Harvesf, C., Resta, G., Riley, G., Santi, P.: A Simulation-Based Study on the Throughput Capacity of Topology Control in CSMA/CA Networks. In: Proceedings of the 4th IEEE International Conference on Pervasive Computing and Communications, pp. 400–404 (2006)

    Google Scholar 

  19. Wu, H., Nabar, S., Poovendran, R.: An Energy Framework for the Network Simulator 3 (ns-3). In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques (SIMUTools 2011), pp. 222–230 (2011)

    Google Scholar 

  20. Roving Networks: RN-174 data sheet (2012), http://www.rovingnetworks.com/resources/download/14/RN_174

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuchs, F., Völker, M., Wagner, D. (2012). Simulation-Based Analysis of Topology Control Algorithms for Wireless Ad Hoc Networks. In: Even, G., Rawitz, D. (eds) Design and Analysis of Algorithms. MedAlg 2012. Lecture Notes in Computer Science, vol 7659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34862-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34862-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34861-7

  • Online ISBN: 978-3-642-34862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics