Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1199 Accesses

Abstract

The central theme in this thesis is the characterization of porous media by combining information of full acoustic waveforms as observed in different components (e.g., particle motion and fluid pressure). We focus on the mathematical description of interface wavemodes, their experimental detection and the estimation of medium parameters using either interface or reflected body wavemodes. In this chapter we first give some background information to motivate the work presented in this thesis. Then, we define the specific research goal, and elaborate how the different chapters are linked to this goal and how they contribute to the main line of story. Finally, we give a summary of the entire thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach, J. D. (1973). Wave Propagation in Elastic Solids. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Allard, J. F. (1993). Propagation of Sound in Porous Media: Modelling of Sound Absorbing Materials. London: Elsevier Applied Science.

    Google Scholar 

  • Allard, J. F., Jansens, G., Vermeir, G., & Lauriks, W. (2002). Frame-borne surface waves in air-saturated porous media. Journal of the Acoustical Society of America, 111(2), 690–696.

    Article  Google Scholar 

  • Allard, J. F., Henry, M., Glorieux, C., Petillon, S., & Lauriks, W. (2003). Laser-induced surface modes at an air-porous medium interface. Journal of Applied Physics, 93(2), 1298–1304.

    Article  Google Scholar 

  • Allard, J. F., Henry, M., Glorieux, C., Lauriks, W., & Petillon, S. (2004). Laser-induced surface modes at water-elastic and poroelastic interfaces. Journal of Applied Physics, 95(2), 528–535.

    Article  Google Scholar 

  • Bachrach, R. (2006). Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 71(5), O53–O63.

    Article  Google Scholar 

  • Berryman, J. G. (1980). Confirmation of Biot’s theory. Applied Physics Letters, 37(4), 382–384.

    Article  Google Scholar 

  • Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Journal of the Acoustical Society of America, 28, 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. Journal of the Acoustical Society of America, 28, 179–191.

    Article  Google Scholar 

  • Blum, T. E., van Wijk, K., Pouet, B., & Wartelle, A. (2010). Multicomponent wavefield characterization with a novel scanning laser interferometer. Review of Scientific Instruments, 81, 1–4.

    Article  Google Scholar 

  • Burns, D. R. (1990). Acoustic waveform logs and the in-situ measurement of permeability—A review. In F. L. Paillet & W. T. Saunders (Eds.), Geophysical Applications for Geotechnical Investigations. Philadelphia: ASTM.

    Google Scholar 

  • Carcione, J. M. (2007). Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media. Amsterdam: Elsevier.

    Google Scholar 

  • Carcione, J. M., Morency, C., & Santos, J. E. (2010). Computational poroelasticity—A review. Geophysics, 75(5), 75A229–75A243.

    Google Scholar 

  • Chotiros, N. P. (2002). An inversion for Biot parameters in water-saturated sand. Journal of the Acoustical Society of America, 112(5), 1853–1868.

    Article  Google Scholar 

  • Cowin, S. C. (1999). Bone poroelasticity. Journal of Biomechanics, 32, 217–238.

    Article  Google Scholar 

  • De Barros, L., Dietrich, M., & Valette, B. (2010). Full waveform inversion of seismic waves reflected in a stratified porous medium. Geophysical Journal International, 182, 1543–1556.

    Article  Google Scholar 

  • Feng, S., & Johnson, D. L. (1983a). High-frequency acoustic properties of a fluid/porous solid interface. I. New surface mode. Journal of the Acoustical Society of America, 74(3), 906–914.

    Article  Google Scholar 

  • Feng, S., & Johnson, D. L. (1983b). High-frequency acoustic properties of a fluid/porous solid interface. II. The 2D reflection Green’s function. Journal of the Acoustical Society of America, 74(3), 915–924.

    Article  Google Scholar 

  • Gassmann, F. (1951). Elastic waves through a packing of spheres. Geophysics, 16, 673–685.

    Article  Google Scholar 

  • Gurevich, B. (1996). On: “Wave Propagation in heterogeneous, porous media: A velocity-stress, finite difference method”, by Dai, N., Vafidis, A., & Kanasewich, E. R. (Geophysics 60, pp. 327–340). Geophysics, 61, 1230–1231.

    Article  Google Scholar 

  • Jocker, J., Smeulders, D., Drijkoningen, G., van der Lee, C., & Kalfsbeek, A. (2004). Matrix propagator method for layered porous media: Analytical expressions and stability criteria. Geophysics, 69(4), 1071–1081.

    Article  Google Scholar 

  • Johnson, D. L., Plona, T. J., & Kojima, H. (1994). Probing porous media with first and second sound. II. Acoustic properties of water-saturated porous media. Journal of Applied Physics, 76(1), 115–125.

    Article  Google Scholar 

  • Lu, J. F., & Hanyga, A. (2005). Fundamental solution for a layered porous half space subject to a vertical point force or a point fluid source. Computational Mechanics, 35, 376–391.

    Article  Google Scholar 

  • Mayes, M. J., Nagy, P. B., Adler, L., Bonner, B. P., & Streit, R. (1986). Excitation of surface waves of different modes at fluid-porous solid interface. Journal of the Acoustical Society of America, 79, 249–252.

    Article  Google Scholar 

  • Müller, T. M., Gurevich, B., & Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics, 75(5), 75A147–75A164.

    Google Scholar 

  • Plona, T. J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Applied Physics Letters, 36, 259–261.

    Article  Google Scholar 

  • Pride, S. (1994). Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B, 21, 15678–15696.

    Article  Google Scholar 

  • Pride, S. R., Harris, J. M., Johnson, D. L., Mateeva, A., Nihei, K. T., & Nowack, R. L., et al. (2003). Permeability dependence of seismic amplitudes. The Leading Edge, 22(6), 518–525.

    Google Scholar 

  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109, B01201.

    Article  Google Scholar 

  • Rosenbaum, J. H. (1974). Synthetic microseismograms: Logging in porous formations. Geophysics, 39(1), 14–32.

    Article  Google Scholar 

  • Sayers, C. M., & Dahlin, A. (1993). Propagation of ultrasound through hydrating cement pastes at early times. Advanced Cement Based Materials, 1(1), 12–21.

    Article  Google Scholar 

  • Sebaa, N., Fellah, Z. E. A., Fellah, M., Ogam, E., Mitri, F. G., Depollier, C., & Lauriks, W. (2008). Application of the Biot model to ultrasound in bone: Inverse problem. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(7), 1516–1523.

    Google Scholar 

  • Straughan, B. (2008). Stability and Wave Motion in Porous Media. New York: Springer.

    Google Scholar 

  • Tang, X. M., & Cheng, A. (2004). Quantitative Borehole Acoustic Methods. Amsterdam: Elsevier.

    Google Scholar 

  • Winkler, K. W., Liu, H. L., & Johnson, D. L. (1989). Permeability and borehole Stoneley waves: Comparison between experiment and theory. Geophysics, 54, 66–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel N. van Dalen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dalen, K.N. (2013). Introduction. In: Multi-Component Acoustic Characterization of Porous Media. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34845-7_1

Download citation

Publish with us

Policies and ethics