Skip to main content

Residual-Based Temporal Correlation Modelling

  • Chapter
  • First Online:
GPS Stochastic Modelling

Part of the book series: Springer Theses ((Springer Theses))

  • 1787 Accesses

Abstract

This chapter describes a residual-based approach to modelling temporal correlations of GPS observations. Section 7.1 reviews previous studies on temporal correlation modelling and their main achievements. Next, Sect. 7.2 presents a decomposition procedure using the studentised residual, which is more suitable for temporal correlation analysis than the least-squares (LS) residual. Finally, Sect. 7.3 provides a deeper insight into ARMA modelling with respect to order selection and parameter estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available free of charge at www.ngs.noaa.gov/gps-toolbox/Larson.htm.

  2. 2.

    Available at www.mathworks.com/matlabcentral/fileexchange/1330.

References

  • Agnew, D. C., & Larson, K. M. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11(1), 71–76. doi:10.1007/s10291-006-0038-4.

    Article  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: B. N. Petrov & F. Csaki (Eds.), Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, 2–8 Sep, 1971, Budapest: Akadémiai Kiadó, pp. 267–281.

    Google Scholar 

  • Amiri-Simkooei, A. R., Teunissen, P. J. G., & Tiberius, C. C. J. M. (2009). Application of least-squares variance component estimation to GPS observables. Journal of Surveying Engineering, 135(4), 149–160. doi:10.1061/(ASCE)0733-9453(2009)135:4(149).

    Google Scholar 

  • Beckman, R. J., & Trussell, H. J. (1974). The distribution of an arbitrary studentized residual and the effects of updating in multiple regression. Journal of the American Statistical Association, 69(345), 199–201. doi:10.2307/2285524.

    Article  Google Scholar 

  • Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research, 113, B04401. doi:10.1029/2007JB005194.

    Article  Google Scholar 

  • Bischoff, W., Heck, B., Howind, J., & Teusch, A. (2006). A procedure for estimating the variance function of linear models and for checking the appropriateness of estimated variances: A case study of GPS carrier-phase observations. Journal of Geodesy, 79(12), 694–704. doi:10.1007/s00190-006-0024-1.

    Article  Google Scholar 

  • Bona, P. (2000). Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solutions, 4(2), 3–13. doi:10.1007/PL00012839.

    Article  Google Scholar 

  • Borre, K., & Tiberius, C. (2000). Time series analysis of GPS observables. In: Proceedings of ION GPS 2000, Salt Lake City, UT, 19–22 Sep, pp. 1885–1894.

    Google Scholar 

  • Braasch, M. S., & van Dierendonck, A. J. (1999). GPS receiver architectures and measurements. Proceedings of the IEEE, 87(1), 48–64. doi:10.1109/5.736341.

    Article  Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Broersen, P. M. T., & Wensink, H. E. (1993). On finite sample theory for autoregressive model order selection. IEEE Transactions on Signal Processing, 41(1), 194–204. doi:10.1109/TSP.1993.193138.

    Article  Google Scholar 

  • Broersen, P. M. T. (2000a). Autoregressive model orders for Durbin’s MA and ARMA estimators. IEEE Transactions on Signal Processing, 48(8), 2454–2457. doi:10.1109/78.852025.

    Article  Google Scholar 

  • Broersen, P. M. T. (2000b). Facts and fiction in spectral analysis. IEEE Transactions on Instrumentation and Measurement, 49(4), 766–772. doi:10.1109/19.863921.

    Article  Google Scholar 

  • Broersen, P. M. T. (2000c). Finite sample criteria for autoregressive order selection. IEEE Transactions on Signal Processing, 48(12), 3550–3558. doi:10.1109/78.887047.

    Article  Google Scholar 

  • Broersen, P. M. T., & de Waele, S. (2004). Finite sample properties of ARMA order selection. IEEE Transactions on Instrumentation and Measurement, 53(3), 645–651. doi:10.1109/TIM.2004.827058.

    Article  Google Scholar 

  • Broersen, P. M. T. (2006). Automatic autocorrelation and spectral analysis. London: Springer.

    Google Scholar 

  • Burg, J. P. (1967). Maximum entropy spectral analysis. In: Proceedings of the 37th Annual Meeting of the Society of Exploration Geophysicists, Oklahoma City, OK, 31 Oct, 1967 (Reprinted in: D. G. Childers (Ed.), Modern spectrum analysis, New York: IEEE Press, 1978, pp. 34–39).

    Google Scholar 

  • Choi, K., Bilich, A., Larson, K. M., & Axelrad, P. (2004). Modified sidereal filtering: Implications for high-rate GPS positioning. Geophysical Research Letters, 31, L22608. doi:10.1029/2004GL021621.

    Article  Google Scholar 

  • Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman & Hall.

    Google Scholar 

  • Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. (2007). Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Stämpfli Publications AG, Bern.

    Google Scholar 

  • Dilßner, F. (2007). Zum Einfluss des Antennenumfeldes auf die hochpräzise GNSS-Positions-bestimmung. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, No. 271, Hannover.

    Google Scholar 

  • Durbin, J. (1959). Efficient estimation of parameters in moving average models. Biometrika, 46(3–4), 306–316. doi:10.1093/biomet/46.3-4.306.

    Google Scholar 

  • Durbin, J. (1960). The fitting of time series models. Revue de l’Institut International de Statistique, 28(3), 233–243. doi:10.2307/1401322.

    Article  Google Scholar 

  • El-Rabbany, A. (1994). The effect of physical correlations on the ambiguity resolution and accuracy estimation in GPS differential positioning. PhD thesis, Department of Geodesy and Geomatics Engineering, Technical Report, No. 170, University of New Brunswick (UNB), New Brunswick.

    Google Scholar 

  • El-Rabbany, A., & Kleusberg, A. (2003). Effect of temporal physical correlation on accuracy estimation in GPS relative positioning. Journal of Surveying Engineering, 129(1), 28–32. doi:10.1061/(ASCE)0733-9453(2003)129:1(28).

    Google Scholar 

  • Fuhrmann, T., Knöpfler, A., Mayer, M., Luo, X., & Heck, B. (2010). Zur GNSS-basierten Bestimmung des atmosphärischen Wasserdampfgehalts mittels precise point positioning. Schriftenreihe des Studiengangs Geodäsie und Geoinformatik, Band 2/2010, Karlsruher Institut für Technologie (KIT), KIT Scientific Publishing, Karlsruhe.

    Google Scholar 

  • Hannen, E. J., & Rissanen, J. (1982). Recursive estimation of mixed autoregressive moving-average order. Biometrika, 69(1), 81–94. doi:10.1093/biomet/69.1.81.

    Article  Google Scholar 

  • Hartinger, H., & Brunner, F. K. (1999). Variances of GPS phase observations: The SIGMA-\(\epsilon \) model. GPS Solutions, 2(4), 35–43. doi: 10.1007/PL00012765.

    Article  Google Scholar 

  • Heck, B. (1981a). Der Einfluß einzelner Beobachtungen auf das Ergebnis einer Ausgleichung und die Suche nach Ausreißern in den Beobachtungen. Allgemeine Vermessungs-Nachrichten (AVN), 88(1), 17–34.

    Google Scholar 

  • Heck, B. (1981b). Statistische Ausreißerkriterien zur Kontrolle geodätischer Beobachtungen. In: R. Conzett et al. (Eds.), Ingenieurvermessung ’80, Beiträge zum VIII. Internationalen Kurs für Ingenieurvermessung, Zurich, Switzerland, 24 Sep–1 Oct, 1980, Bonn: Dümmler.

    Google Scholar 

  • Hilla, S. (2002). A new plotting program for Windows-based TEQC users. GPS Solutions, 6(3), 196–200. doi:10.1007/s10291-002-0027-1.

    Article  Google Scholar 

  • Howind, J., Kutterer, H., & Heck, B. (1999). Impact of temporal correlations on GPS-derived relative point positions. Journal of Geodesy, 73(5), 246–258. doi:10.1007/s001900050241.

    Article  Google Scholar 

  • Howind, J. (2005). Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen. Deutsche Geodätische Kommission, No. C584, Verlag der Bayerischen Akademie der Wissenschaften, Munich.

    Google Scholar 

  • Jin, S. G., Luo, O., & Ren, C. (2010). Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates. Advances in Space Research, 46(2), 190–195. doi:10.1016/j.asr.2010.01.017.

    Article  Google Scholar 

  • Kim, D., Langley, R. B., Bond, J., & Chrzanowski, A. (2003). Local deformation monitoring using GPS in an open pit mine: Initial study. GPS Solutions, 7(3), 176–185. doi:10.1007/s10291-003-0075-1.

    Article  Google Scholar 

  • Klees, R., & Broersen, P. (2002). How to handle colored observation noise in large-scale least-squares problems: Building the optimal filter. Delft: DUP Science.

    Google Scholar 

  • Klees, R., Ditmar, P., & Broersen, P. (2003). How to handle colored observation noise in large least-squares problems. Journal of Geodesy, 76(11–12), 629–640. doi:10.1007/s00190-002-0291-4.

    Article  Google Scholar 

  • Langley, R. B. (1997). GPS receiver system noise. GPS World, 8(6), 40–45.

    Google Scholar 

  • Larson, K. M., Bilich, A., & Axelrad, P. (2007). Improving the precision of high-rate GPS. Journal of Geophysical Research, 112, B05422. doi:10.1029/2006JB004367.

    Article  Google Scholar 

  • Lau, L. (2012). Comparison of measurement and position domain multipath filtering techniques with the repeatable GPS orbits for static antennas. Survey Review, 44(324), 9–16. doi:10.1179/1752270611Y.0000000003.

    Article  Google Scholar 

  • Leandro, R. F., & Santos, M. C. (2007). Stochastic models for GPS positioning: An empirical approach. GPS World, 18(2), 50–56.

    Google Scholar 

  • Li, B., Shen, Y., & Xu, P. (2008). Assessment of stochastic models for GPS measurements with different types of receivers. Chinese Science Bulletin, 53(20), 3219–3225. doi:10.1007/s11434-008-0293-6.

    Article  Google Scholar 

  • Li, B., Shen, Y., & Lou, L. (2011). Efficient estimation of variance and covariance components: A case study for GPS stochastic model evaluation. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 203–210. doi:10.1109/TGRS.2010.2054100.

    Article  Google Scholar 

  • Luo, X. (2010). Ein Ansatz zur Residuendekomposition für die Bestimmung und Modellierung der zeitlichen Korrelationen von GNSS-Beobachtungen. In: K. Zippelt (Ed.), Vernetzt und ausgeglichen—Festschrift zur Verabschiedung von Prof. Dr.-Ing. habil. Dr.-Ing. E.h. Günter Schmitt. Schriftenreihe des Studiengangs Geodäsie und Geoinformatik, Band 3/2010, Karlsruhe Institut für Technologie (KIT), KIT Scientific Publishing, Karlsruhe, pp. 221–239. doi:10.5445/KSP/1000020074.

  • Luo, X., Mayer, M., & Heck, B. (2011a). On the probability distribution of GNSS carrier phase observations. GPS Solutions, 15(4), 369–379. doi:10.1007/s10291-010-0196-2.

    Article  Google Scholar 

  • Luo, X., Mayer, M., & Heck, B. (2011b). Verification of ARMA identification for modelling temporal correlations of GNSS observations using the ARMASA toolbox. Studia Geophysica et Geodaetica, 55(3), 537–556. doi:10.1007/s11200-011-0033-2.

    Article  Google Scholar 

  • Markowski, C. A., & Markowski, E. P. (1990). Conditions for the effectiveness of a preliminary test of variance. The American Statistician, 44(4), 322–326. doi:10.2307/2684360.

    Google Scholar 

  • Nahavandchi, H., & Joodaki, G. (2010). Correlation analysis of multipath effects in GPS-code and carrier phase observations. Survey Review, 42(316), 193–206. doi:10.1179/003962610X12572516251808.

    Article  Google Scholar 

  • Niemeier, W. (2008). Ausgleichungsrechnung: Statistische Auswertemethoden (2nd ed.). Berlin: Walter de Gruyter.

    Google Scholar 

  • Petovello, M. G., O’Keefe, K., Lachapelle, G., & Cannon, M. E. (2009). Consideration of time-correlated errors in a Kalman filter applicable to GNSS. Journal of Geodesy, 83(1), 51–56. doi:10.1007/s00190-008-0231-z.

    Article  Google Scholar 

  • Pope, A. J. (1976). The statistics of residuals and the detection of outliers. NOAA Technical Report NOS 65 NGS 1, Rockville, MD.

    Google Scholar 

  • Priestly, M. B. (1981). Spectral analysis and time series. London: Academic Press.

    Google Scholar 

  • Ragheb, A. E., Clarke, P. J., & Edwards, S. J. (2007). GPS sidereal filtering: Coordinate- and carrier-phase-level strategies. Journal of Geodesy, 81(5), 325–335. doi:10.1007/s00190-006-0113-1.

    Google Scholar 

  • Richter, B., & Green, A. (2004). Relevance of dual frequency surveying system tests for real time field performance. In: Proceedings of ION GNSS 2004, Long Beach, CA, 21–24 Sep, pp. 1367–1373

    Google Scholar 

  • Satirapod, C., Wang, J., & Rizos, C. (2001). A new stochastic modelling procedure for precise static GPS positioning. Zeitschrift für Vermessungswesen (ZfV), 126(6), 365–372.

    Google Scholar 

  • Satirapod, C., Wang, J., & Rizos, C. (2002). A simplified MINQUE procedure for the estimation of variance-covariance components of GPS observables. Survey Review, 36(286), 582–590. doi:10.1179/003962602791482920.

    Article  Google Scholar 

  • Schön, S., & Brunner, F. K. (2008a). Atmospheric turbulence theory applied to GPS carrier-phase data. Journal of Geodesy, 82(1), 47–57. doi:10.1007/s00190-007-0156-y.

    Article  Google Scholar 

  • Schön, S., & Brunner, F. K. (2008b). A proposal for modelling physical correlations of GPS phase observations. Journal of Geodesy, 82(10), 601–612. doi:10.1007/s00190-008-0211-3.

    Article  Google Scholar 

  • Seeber, G., Menge, F., Völksen, C., Wübbena, G., & Schmitz, M. (1998). Precise GPS positioning improvements by reducing antenna and site dependent effects. In: F. K. Brunner (Ed.), Advances in positioning and reference frames, Proceedings of the 1997 IAG Scientific Assembly, Rio de Janeiro, Brazil, 3–9 Sep, IAG Symposia, vol. 118, Berlin: Springer, pp. 237–244.

    Google Scholar 

  • Seeber, G. (2003). Satellite geodesy (2nd ed.). Berlin: Walter de Gruyter.

    Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods (6th ed.). Ames: Iowa State University Press.

    Google Scholar 

  • Stoica, P., & Moses, R. L. (1997). Introduction to spectral analysis. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Tiberius, C., & Borre, K. (1999). Probability distribution of GPS code and phase data. Zeitschrift für Vermessungswesen (ZfV), 124(8), 264–273.

    Google Scholar 

  • Tiberius, C., Jonkman, N., & Kenselaar, F. (1999). The stochastics of GPS observables. GPS World, 10(2), 49–54.

    Google Scholar 

  • Tiberius, C. C. J. M., & Kenselaar, F. (2000). Estimation of the stochastic model for GPS code and phase observables. Survey Review, 35(277), 441–454. doi:10.1179/003962600791520686.

    Article  Google Scholar 

  • Tiberius, C., & Kenselaar, F. (2003). Variance component estimation and precise GPS positioning: Case study. Journal of Surveying Engineering, 129(1), 11–18. doi:10.1061/(ASCE)0733-9453(2003)129:1(11).

    Google Scholar 

  • Vondrák, J. (1969). A contribution to the problem of smoothing observational data. Bulletin of the Astronomical Institute of Czechoslovakia, 20(6), 349–355.

    Google Scholar 

  • Wang, J., Stewart, M. P., & Tsakiri, M. (1998). Stochastic modeling for static GPS baseline data processing. Journal of Surveying Engineering, 124(4), 171–181. doi:10.1061/(ASCE)0733-9453(1998)124:4(171).

    Google Scholar 

  • Wang, J., Satirapod, C., & Rizos, C. (2002). Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. Journal of Geodesy, 76(2), 95–104. doi:10.1007/s00190-001-0225-6.

    Article  Google Scholar 

  • Wheelon, A. D. (2001). Electromagnetic scintillation I. Geometrical optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Whittaker, E. T., & Robinson, G. (1924). The calculus of observations: A treatise on numerical mathematics. London: Blackie and Son.

    Google Scholar 

  • Wübbena, G., Schmitz, M., & Boettcher, G. (2006). Near-field effects on GNSS sites: Analysis using absolute robot calibrations and procedures to determine corrections. In: Proceeding of the IGS Workshop—Perspectives and Visions for 2010 and beyond, 8–12 May, ESOC, Darmstadt.

    Google Scholar 

  • Zheng, D., & Luo, S. (1992). Contribution of time series analysis to data processing of astronomical observations in China. Statistica Sinica, 2(2), 605–618.

    Google Scholar 

  • Zheng, D. W., Zhong, P., Ding, X. L., & Chen, W. (2005). Filtering GPS time-series using a Vondrak filter and cross-validation. Journal of Geodesy, 79(6–7), 363–369. doi:10.1007/s00190-005-0474-x.

    Article  Google Scholar 

  • Zhong, P., Ding, X., Yuan, L., Xu, Y., Kwok, K., & Chen, Y. (2010). Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. Journal of Geodesy, 84(2), 145–158. doi:10.1007/s00190-009-0352-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, X. (2013). Residual-Based Temporal Correlation Modelling. In: GPS Stochastic Modelling. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34836-5_7

Download citation

Publish with us

Policies and ethics