Skip to main content

Game Theory for Security: An Important Challenge for Multiagent Systems

  • Conference paper
Book cover Multi-Agent Systems (EUMAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7541))

Included in the following conference series:

Abstract

The goal of this paper is to introduce a real-world challenge problem for researchers in multiagent systems and beyond, where our collective efforts may have a significant impact on activities in the real-world. The challenge is in applying game theory for security: Our goal is not only to introduce the problem, but also to provide exemplars of initial successes of deployed systems in this challenge problem arena, some key open research challenges and pointers to getting started in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pita, J., Jain, M., Western, C., Portway, C., Tambe, M., Ordonez, F., Kraus, S., Parachuri, P.: Deployed ARMOR protection: The application of a game-theoretic model for security at the Los Angeles International Airport. In: Proc. of the 7th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 125–132 (2008)

    Google Scholar 

  2. Tsai, J., Rathi, S., Kiekintveld, C., Ordonez, F., Tambe, M.: IRIS: a tool for strategic security allocation in transportation networks. In: Proc. of the 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 37–44 (2009)

    Google Scholar 

  3. An, B., Pita, J., Shieh, E., Tambe, M., Kiekintveld, C., Marecki, J.: Guards and protect: Next generation applications of security games. SIGECOM 10, 31–34 (2011)

    Article  Google Scholar 

  4. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., Meyer, G.: PROTECT: A deployed game theoretic system to protect the ports of the united states. In: Proc. of the 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2012)

    Google Scholar 

  5. Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., Steigerwald, E.: Guards - game theoretic security allocation on a national scale. In: Proc. of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2011)

    Google Scholar 

  6. Yin, Z., Jiang, A., Johnson, M., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., Sullivan, J.: Trusts: Scheduling randomized patrols for fare inspection in transit systems. In: Proc. of the 24th Conference on Innovative Applications of Artificial Intelligence, IAAI (2012)

    Google Scholar 

  7. Osbourne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)

    Google Scholar 

  8. von Stengel, B., Zamir, S.: Leadership with commitment to mixed strategies. Technical Report LSE-CDAM-2004-01, CDAM Research Report (2004)

    Google Scholar 

  9. Conitzer, V., Sandholm, T.: Computing the Optimal Strategy to Commit to. In: Proc. of the ACM Conference on Electronic Commerce, ACM-EC, pp. 82–90 (2006)

    Google Scholar 

  10. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games with security: An efficient exact algorithm for Bayesian Stackelberg games. In: Proc. of the 7th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 895–902 (2008)

    Google Scholar 

  11. Harsanyi, J., Selten, R.: A Generalized Nash Solution for Two-Person Bargaining Games with Incomplete Information 18, 80–106 (1972)

    Google Scholar 

  12. Paruchuri, P., Pearce, J.P., Tambe, M., Ordonez, F., Kraus, S.: An efficient heuristic approach for security against multiple adversaries. In: Proc. of the 6th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 311–318 (2007)

    Google Scholar 

  13. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in environments with arbitrary topologies. In: Proc. of the 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 500–503 (2009)

    Google Scholar 

  14. Korzhyk, D., Conitzer, V., Parr, R.: Complexity of computing optimal stackelberg strategies in security resource allocation games. In: Proc. of the 24th AAAI Conference on Artificial Intelligence, pp. 805–810 (2010)

    Google Scholar 

  15. Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., Ordonez, F.: Software assistants for randomized patrol planning for the lax airport police and the federal air marshal service. Interfaces 40, 267–290 (2010)

    Article  Google Scholar 

  16. Jain, M., Kardes, E., Kiekintveld, C., Ordonez, F., Tambe, M.: Security games with arbitrary schedules: A branch and price approach. In: Proc. of the 24th AAAI Conference on Artificial Intelligence, pp. 792–797 (2010)

    Google Scholar 

  17. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for normal form games. Games and Economic Behavior 10(1), 6–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. TSA: Layers of Security: What We Do (2011)

    Google Scholar 

  19. TSA: Transportation Security Administration – U.S. Department of Homeland Security (2011)

    Google Scholar 

  20. Hamilton, B.A.: Faregating analysis. Report commissioned by the la metro (2007)

    Google Scholar 

  21. Jiang, A.X., Yin, Z., Kietkintveld, C., Leyton-Brown, K., Sandholm, T., Tambe, M.: Towards optimal patrol strategies for urban security in transit systems. In: Proc. of the AAAI Spring Symposium on Game Theory for Security, Sustainability and Health (2012)

    Google Scholar 

  22. Johnson, M., Fang, F., Yang, R., Tambe, M., Albers, H.: Patrolling to maximize pristine forest area. In: Proc. of the AAAI Spring Symposium on Game Theory for Security, Sustainability and Health (2012)

    Google Scholar 

  23. Ordonez, F., Tambe, M., Jara, J.F., Jain, M., Kiekintveld, C., Tsai, J.: Deployed security games for patrol planning. In: Handbook on Operations Research for Homeland Security (2008)

    Google Scholar 

  24. Trusov, M., Bucklin, R.E., Pauwels, K.: Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site. Journal of Marketing 73 (2009)

    Google Scholar 

  25. Howard, N.J.: Finding optimal strategies for influencing social networks in two player games. Master’s thesis, MIT, Sloan School of Management (2011)

    Google Scholar 

  26. Alpcan, T.: Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press (2010)

    Google Scholar 

  27. Vanek, O., Yin, Z., Jain, M., Bosansky, B., Tambe, M., Pechoucek, M.: Game-theoretic resource allocation for malicious packet detection in computer networks. In: Proc. of the 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2012)

    Google Scholar 

  28. Jain, M., Korzhyk, D., Vanek, O., Pechoucek, M., Conitzer, V., Tambe, M.: A double oracle algorithm for zero-sum security games on graphs. In: Proc. of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2011)

    Google Scholar 

  29. Kiekintveld, C., Marecki, J., Tambe, M.: Approximation methods for infinite bayesian stackelberg games: modeling distributional uncertainty. In: Proc. of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2011)

    Google Scholar 

  30. Yin, Z., Jain, M., Tambe, M., Ordonez, F.: Risk-averse strategies for security games with execution and observational uncertainty. In: Proc. of the 25th AAAI Conference on Artificial Intelligence, AAAI, pp. 758–763 (2011)

    Google Scholar 

  31. An, B., Tambe, M., Ordonez, F., Shieh, E., Kiekintveld, C.: Refinement of strong stackelberg equilibria in security games. In: Proc. of the 25th Conference on Artificial Intelligence, pp. 587–593 (2011)

    Google Scholar 

  32. Kahneman, D., Tvesky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47(2), 263–291 (1979)

    Article  MATH  Google Scholar 

  33. Yang, R., Kiekintveld, C., Ordonez, F., Tambe, M., John, R.: Improving resource allocation strategy against human adversaries in security games. In: IJCAI (2011)

    Google Scholar 

  34. Pita, J., Jain, M., Tambe, M., Ordóñez, F., Kraus, S.: Robust solutions to stackelberg games: Addressing bounded rationality and limited observations in human cognition. Artificial Intelligence 174(15), 1142–1171 (2010)

    Article  MATH  Google Scholar 

  35. An, B., Jain, M., Tambe, M., Kiekintveld, C.: Mixed-initiative optimization in security games: A preliminary report. In: Proc. of the AAAI Spring Symposium on Help Me Help You: Bridging the Gaps in Human-Agent Collaboration, pp. 8–11 (2011)

    Google Scholar 

  36. Brown, M., An, B., Kiekintveld, C., Ordonez, F., Tambe, M.: Multi-objective optimization for security games. In: Proc. of the 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2012)

    Google Scholar 

  37. Taylor, M.E., Kiekintveld, C., Western, C., Tambe, M.: A framework for evaluating deployed security systems: Is there a chink in your armor? Informatica 34, 129–139 (2010)

    Google Scholar 

  38. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press (2011)

    Google Scholar 

  39. Dickerson, J.P., Simari, G.I., Subrahmanian, V.S., Kraus, S.: A graph-theoretic approach to protect static and moving targets from adversaries. In: Proc. of the 9th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp. 299–306 (2010)

    Google Scholar 

  40. Korzhyk, D., Conitzer, V., Parr, R.: Solving stackelberg games with uncertain observability. In: Proc. of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS (2011)

    Google Scholar 

  41. Korzhyk, D., Conitzer, V., Parr, R.: Security games with multiple attacker resources. In: Proc. of the International Joint Conference on Artificial Intelligence, IJCAI (2011)

    Google Scholar 

  42. Letchford, J., Vorobeychik, Y.: Computing randomized security strategies in networked domains. In: Proc. of the AAAI Workshop on Applied Adversarial Reasoning and Risk Modeling, AARM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

An, B., Tambe, M. (2012). Game Theory for Security: An Important Challenge for Multiagent Systems. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds) Multi-Agent Systems. EUMAS 2011. Lecture Notes in Computer Science(), vol 7541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34799-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34799-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34798-6

  • Online ISBN: 978-3-642-34799-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics