Skip to main content

Brief Overview on Some New Developments

  • Chapter
  • First Online:
The Vitreous State

Abstract

The present monograph is widely identical to the first edition of the present book published by Springer in 1995 removing several printing mistakes and indicating in footnotes briefly some new developments. In the present supplementary new chapter, we are attempting to give a more extended but necessarily also brief overview on new developments, trying to summarize problems, scientific ideas and results, as they have been developed mainly in the fields of the theory of vitrification, in the understanding of the nature of vitreous states and in treating nucleation, phase separation and crystallization in glass-forming systems in the years after the first edition of this book has been published. In describing these ideas and results and in bringing them to the attention of our readers, we have followed mainly the route of development, as it appeared in the framework of our own understanding and interests and as far as they could be considered as a continuation of the analysis of problems and ideas, developed in the first edition of this book. As far as these ideas are to a great extent in line with the general main tendencies in the present international literature, they give also an impression of general trends and developments in glass science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In discussing our approach at a conference in Cherkassy, Ukraine, in June 2012, organized by Andriy Gusak and coworkers, one of the participants (E. Rabkin, Haifa, Israel) noted that eventually similar ideas have been anticipated earlier by E. Scheil [118] and J. N. Hobstetter [119] in application to nucleation-growth processes in metal physics, where this approach is denoted as Scheil-Hobstetter model [120]. As it turned out this suggestion was fully correct. Indeed, Scheil started his paper of 1950 with the observation of W. Gerlach [121] that in segregation of nickel-gold particles from a solid solution as a rule particles are formed which do not have the equilibrium composition. He cited also the observation of G. Masing [122] in his book on metal physics that such effect – the difference of the composition of the clusters from the composition of the macroscopic phases – is not an exception but the rule in metal physics. Employing similarly to our analysis in [115] Becker’s equation [123] for the description of the interfacial energy in dependence on composition, he demanded similarly to our approach that the critical cluster composition is, in general, different from the equilibrium composition of macroscopic samples and determined by the condition of the minimum of the work of critical cluster formation, i.e., he had really expressed the same idea as advanced by us 50 years later not being aware then of this earlier work. However, Scheil presumably did not recognize that this approach is in deep conflict to Gibbs classical theory which leads – if correctly employed – to different results. Consequently, in the analysis of Scheil the question remains unanswered how one can employ on one side Gibbs theory but replace one of the inherent consequences by a different assumption contradicting the conclusions of Gibbs’ classical approach. By the way, as mentioned by Scheil as well, Becker, developing and employing the relation for the description of the surface tension in dependence on composition, employed in the analysis Gibbs classical theory, i.e., identified the composition of the newly evolving critical clusters with the composition of the newly forming macroscopic phase. In addition, Scheil supposed that eventually the state of the critical cluster may refer to some metastable phase which under certain conditions may be formed macroscopically remaining in this way to some extent at the level of the classical Ostwald’s rule of stages (but leaving open also the possibility that such metastable states may not exist). According to our treatment formulated in the generalized Ostwald’s rule of stages, the composition of the critical clusters is from the very beginning supposed to refer to transient states (composition, density, structure etc.) having no macroscopic analogon.

  2. 2.

    This section has benefitted highly from discussions with Alexander S. Abyzov which are gratefully acknowledged.

References

  1. Abbe, Y., Mori, K., Naruse, A.: Proceedings of the 10-th International Congress on Glass, Kyoto, p. 17 (1974)

    Google Scholar 

  2. Abbe, Y., Mori, K., Naruse, A.: Yogue-Kyokai-Shi 84, 111 (1976)

    Article  Google Scholar 

  3. Abyzov, A.S., Schmelzer, J.W.P.: Nucleation versus Spinodal Decomposition in Confined Binary Solutions. J. Chem. Phys. 127, 114504 (2007)

    Article  ADS  Google Scholar 

  4. Abyzov, A.S., Schmelzer, J.W.P., Kovalchuk, A.A., Slezov, V.V.: Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution. J. Non Cryst. Solids 356, 2915 (2010)

    Article  ADS  Google Scholar 

  5. Adam, G., Gibbs, J.H.: J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  6. Adams, L.H.: J. Franklin Inst. 216, 39 (1933)

    Article  Google Scholar 

  7. Alfrey, T.: Mechanical Behaviour of High Polymers. Interscience Publishers, New York (1955)

    Google Scholar 

  8. Alfrey, T., Goldfinger, G., Mark, H.: J. Appl. Phys. 14, 701 (1943)

    Article  ADS  Google Scholar 

  9. Anderson, C.T.: J. Am. Chem. Soc. 59, 1036 (1937)

    Article  Google Scholar 

  10. Anderson, P.W.: Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  11. Anderson, E., Story, L.G.: J. Amer. Chem. Soc. 45, 1102 (1923)

    Article  Google Scholar 

  12. Anderson, P.W., Halperin, B.I., Varma, C.M.: Phil. Mag. 25, 1 (1972)

    Article  MATH  ADS  Google Scholar 

  13. Andrade, E.N.: Nature 125, 309 (1930); Phil. Mag. 17, 698 (1934)

    Google Scholar 

  14. Andreev, N.S., Mazurin, O.V., Porai-Koshits, E.A., Roscova, G.P., Filipovich, V.N.: Liquid Phase Separation in Glasses. Nauka, Moscow (1974, in Russian)

    Google Scholar 

  15. Angell, C.A., Rao, K.J.: J. Chem. Phys. 57, 470 (1972)

    Article  ADS  Google Scholar 

  16. Angell, C.A., Sichina, W.: Thermodynamics of the glass transition: empirical aspects. In: Goldstein, M., Simha, R. (eds.) The Glass Transition and the Nature of the Glassy State, vol. 279, p. 53. Annals New York Academy of Sciences, New York (1976)

    Google Scholar 

  17. Arayo, R.J.: Contemp. Phys. 21, 77 (1980)

    Article  ADS  Google Scholar 

  18. Arcimovich, L.A.: Elementare Plasmaphysik. Akademie-Verlag, Berlin (1972)

    Google Scholar 

  19. Avrami, M.: J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941)

    Google Scholar 

  20. Avramov, I.: J. Mater. Sci. Lett. 13, 1367 (1994)

    Article  Google Scholar 

  21. Avramov, I., Gutzow, I.: Mater. Chem. 5, 315 (1980)

    Article  Google Scholar 

  22. Avramov, I., Gutzow, I.: J. Non Cryst. Solids 104, 148 (1988)

    Article  ADS  Google Scholar 

  23. Avramov, I., Milchev, A.: Fiz. i Khim. Stekla 10, 649 (1984)

    Google Scholar 

  24. Avramov, I., Milchev, A.: J. Non Cryst. Solids 104, 253 (1988)

    Article  ADS  Google Scholar 

  25. Avramov, I., Pascova, R., Samouneva, B., Gutzow, I.: Phys. Chem. Glass. 20, 91 (1979)

    Google Scholar 

  26. Avramov, I., Grantcharova, E., Gutzow, I.: J. Non Cryst. Solids 52, 111 (1981)

    Google Scholar 

  27. Avramov, I., Grantcharova, E., Gutzow, I.: J. Non Cryst. Solids 91, 386 (1987)

    Article  ADS  Google Scholar 

  28. Avramov, I., Grantcharova, E., Gutzow, I.: J. Cryst. Growth 87, 305 (1988)

    Article  ADS  Google Scholar 

  29. Avramov, I., Grantcharova, E., Gutzow, I.: J. Non Cryst. Solids 104, 148 (1988)

    Article  ADS  Google Scholar 

  30. Avramov, I., Grudeva, S., Gutzow, I.: Thin Solid Films 185, 91 (1990)

    Article  ADS  Google Scholar 

  31. Avramov, I., Gnappi, G., Montenero, A.: Phys. Chem. Glass. 33, 140 (1992)

    Google Scholar 

  32. Baidakov, V.G.: Explosive Boiling of Superheated Cryogenic Liquids. WILEY-VCH, Berlin-Weinheim (2007)

    Book  Google Scholar 

  33. Balta, P., Balta, E.: Introduction to the Physical Chemistry of the Vitreous State. Editura Academiei, Bukarest. Abacus Press, Kent (1976)

    Google Scholar 

  34. Barker, J.A., Hoare, M.R., Finney, J.L.: Nature 257, 120 (1975)

    Article  ADS  Google Scholar 

  35. Barlow, W.: Proc. R. Soc. (Dublin) 8, 527 (1898)

    Google Scholar 

  36. Barrett, P.: Cinetique Heterogene. Gauthier-Villars, Paris (1973)

    Google Scholar 

  37. Bartels, J.: Zur Theorie von Keimbildung und Keimwachstum in kondensierten Systemen. Dissertation A, Rostock (1991)

    Google Scholar 

  38. Bartels, J., Schmelzer, J.: Phys. Stat. Solidi a132, 361 (1992)

    Google Scholar 

  39. Bartels, J., Schmelzer, J., Schweitzer, F.: Non-stationary nucleation and the Johnson-Mehl-Avrami equation. In: Ebeling, W., Ulbricht, H. (eds.) Irreversible Processes and Selforganization, p. 47 ff. Teubner Texte zur Physik, Leipzig (1989)

    Google Scholar 

  40. Bartels, J., Schweitzer, F., Schmelzer, J.: J. Non Cryst. Solids 125, 129 (1990)

    Article  ADS  Google Scholar 

  41. Bartels, J., Lembke, U., Pascova, R., Schmelzer, J., Gutzow, I.: J. Non Cryst. Solids 136, 181 (1991)

    Article  ADS  Google Scholar 

  42. Bartenev, G.M.: Doklady Akademii Nauk SSSR 76, 227 (1951)

    Google Scholar 

  43. Bartenev, G.M.: Structure and Mechanical Properties of Inorganic Glasses. Building Materials Press, Moscow (1966, in Russian)

    Google Scholar 

  44. Bartenev, G.M.: Strength and Mechanism of Fracture of Polymers. Chemistry State Press, Moscow (1984, in Russian)

    Google Scholar 

  45. Bartenev, G.M., Frenkel, S.Y.: Physics of Polymers. Chemistry State Press, Leningrad (1990, in Russian)

    Google Scholar 

  46. Bartenev, G.M., Sanditov, D.S.: Relaxation Processes in Glass-forming Systems. Nauka, Moscow (1986, in Russian)

    Google Scholar 

  47. Bartenev, G.M., Sanditov, D.S., Rasumovskaya, I.V., Lukyanov, I.A.: Ukr. Fiz. Zhurnal 14, 1529 (1969)

    Google Scholar 

  48. Batchinski, J.: Phys. Z. 13, 1157 (1912); Z. Phys. Chem. 84, 643 (1913)

    Google Scholar 

  49. Battezatti, L., Garrone, E.: Z. Metallkunde 75, 305 (1984)

    Google Scholar 

  50. Bauer, E.: Zs. Kristallografie 110, 372 (1958)

    Article  ADS  Google Scholar 

  51. Bazarov, I.P.: Thermodynamics. Higher Education Press, Moscow (1976, in Russian)

    Google Scholar 

  52. Beal, R.J., Dean, R.P.: Phys. Chem. Glass. 9, 125 (1968)

    Google Scholar 

  53. Beaman, R.: J. Polym. Sci. 9, 470 (1952)

    Article  ADS  Google Scholar 

  54. Beaver, M.B.: Encyclopedia of Materials Science and Engineering. Mechanical Properties of Polymers, vol. 4. Pergamon Press, Oxford (1986)

    Google Scholar 

  55. Becker, R.: Ann. Phys. 32, 128 (1938)

    Article  Google Scholar 

  56. Becker, R.: Theorie der Wärme. Springer, Berlin-Göttingen-Heidelberg (1964)

    Book  MATH  Google Scholar 

  57. Becker, R., Döring, W.: Ann. Phys. 24, 719 (1935)

    Article  MATH  Google Scholar 

  58. Behrnd, K.: J. Vac. Sci. Technol. 7, 385 (1970)

    Article  ADS  Google Scholar 

  59. Bekkedahl, N.: J. Res. Natl. Bureau Stand. 13, 411 (1934); Rubbber Chem. Technol. 8, 5 (1935)

    Google Scholar 

  60. Belkevich, P.I.: Overview on topochemical equations and their applicability to the kinetics of thermal decomposition of solid bodies. In: Collected Works of the Belorussian Academy of Sciences, Institute of Chemistry, p. 21. Academy of Sciences Publishers, Minsk (1956, in Russian)

    Google Scholar 

  61. Belov, N.B.: Structure of Ionic Crystals and Metallic Phases. Academy of Sciences USSR Publishers, Moscow (1947, in Russian)

    Google Scholar 

  62. Bengtzelius, U., Sjögren, L.: J. Chem. Phys. 84, 1744 (1986)

    Article  ADS  Google Scholar 

  63. Bengtzelius, U., Götze, W., Sjölander, A.: J. Phys. C17, 5915 (1984)

    ADS  Google Scholar 

  64. Bennett, C.H.: Demons, engines and the second law. Sci. Am. 257, 108–116 (1987)

    Article  ADS  Google Scholar 

  65. Berezhnoi, A.I.: Sitals and Photositals. Mashinostroenie Publishers, Moscow (1981, in Russian)

    Google Scholar 

  66. Berger, E.: Glastech. Ber. 8, 339 (1930)

    Google Scholar 

  67. Bergmann, C., Avramov, I., Zahra, C.Y., Mathieu, J.K.: J. Non Cryst. Solids 70, 367 (1985)

    Article  ADS  Google Scholar 

  68. Berman, I., Patterson, M.S.: J. Appl. Chem. 11, 369 (1961)

    Article  Google Scholar 

  69. Bernal, J.D.: Science in History. C. A. Watts, London (1957)

    Google Scholar 

  70. Bernal, J.D.: Nature 183, 141 (1959)

    Article  ADS  Google Scholar 

  71. Bernal, J.D.: Sci. Am. 8, 908 (1960)

    Google Scholar 

  72. Bernal, J.D.: Proc. R. Soc. 280, 299 (1964)

    Article  ADS  Google Scholar 

  73. Bernal, J.D., Mason, J.: Nature 188, 908 (1960)

    Article  ADS  Google Scholar 

  74. Berry, R.S., Burdett, J., Castleman, A.W. (eds.): Proceedings VI-th International Meeting on Small Particles and Inorganic Clusters, Chicago, USA, September 1992, Z. Phys. D 26 (1993)

    Google Scholar 

  75. Bertocci, U.: Surf. Sci. 15, 286 (1969)

    Article  ADS  Google Scholar 

  76. Bestul, A.B., Blackburn, D.H.: J. Chem. Phys. 33, 1274 (1960)

    Article  ADS  Google Scholar 

  77. Bestul, A., Chang, S.: J. Chem. Phys. 40, 3731 (1964)

    Article  ADS  Google Scholar 

  78. Bienenstock, A.: Radial distribution function in EXAFS-studies of amorphous materials. In: Gaskall, P.H. (ed.) The Structure of Non-crystalline Materials. Symposium Proceedings, Cambridge, England, p. 5. Taylor and Francis, London (1977)

    Google Scholar 

  79. Binder, K.: Spinodal Decomposition. In: Materials Science and Technology. VCH-Verlagsgesellschaft, Weinheim (1992)

    Google Scholar 

  80. Binder, K., Stauffer, D.: Adv. Phys. 25, 343 (1976)

    Article  ADS  Google Scholar 

  81. Bliznakov, G.: Fortschritte der Mineralogie 36, 149 (1958)

    Google Scholar 

  82. Blumberg, B.Y.: Introduction into the Physical Chemistry of Glasses. Chemistry State Publishers, Leningrad (1939, in Russian)

    Google Scholar 

  83. Bokii, G.P.: Crystal Chemistry. Moscow University Press, Moscow (1960, in Russian)

    Google Scholar 

  84. Boltzmann, L.: Vorlesungen über die kinetische Gastheorie. Johann-Ambrosius-Barth Verlag, Leipzig (1896–1898)

    Google Scholar 

  85. Bonch-Bruevich, V.L. (ed.): Theory and Properties of Disordered Materials, p. 5. Mir Publishers, Moscow (1977, in Russian)

    Google Scholar 

  86. Bondi, A.: Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York, 1968

    Google Scholar 

  87. Bonissent, A., Mutaftschiev, B.: J. Phys. Chem. 56, 580 (1973)

    Google Scholar 

  88. Borovinski, L.A., Zindergosen, A.N.: Investigation of Processes of Crystallization. In: Scientific Papers of the Herzen State College of Education, Novgorod, p. 27 (1969)

    Google Scholar 

  89. Botet, R., Jullien, R.: Ann. Phys. (France) 13, 153 (1988)

    Google Scholar 

  90. Boyer, R.F., Spencer, R.S.: J. Appl. Phys. 16, 594 (1945)

    Article  ADS  Google Scholar 

  91. Boyer, R.F., Spencer, R.S.: Advances in Colloid Science, vol. II. Interscience Publishers, New York (1946)

    Google Scholar 

  92. Brandes, H.: Z. Phys. Chem. 126, 196 (1927)

    Google Scholar 

  93. Bray, P.J., Silver, A.H.: Nuclear magnetic resonance adsorption in glass. In: Mackenzie, J.D. (ed.) Modern Aspects of the Vitreous State, p. 92. Butterworths, London (1960)

    Google Scholar 

  94. Bray, P.J., Loui, M.L., Hintenlang, D.E.: Proceedings of the 2-nd International Otto-Schott-Kolloquium, Jena, 1983. Wissenschaftliche Zeitschrift der Friedrich-Schiller-Universität Jena, Mathematisch-Naturwissenschaftliche Reihe 32, 409 (1983)

    Google Scholar 

  95. Bresler, S.F.: Acta Physicochim. (USSR) 10, 491 (1939)

    Google Scholar 

  96. Brizke, E.W., Kapustinski, A.F. (eds.): Caloric Constants of Inorganic Substances. Academy of Science Press, Moscow, Leningrad (1949, in Russian)

    Google Scholar 

  97. Buckley, H.E.: Crystal Growth. Wiley, New York/London (1951)

    Google Scholar 

  98. Budewski, E., Bostanoff, W., Vitanov, T., Stoinov, Z., Kotzewa, A., Kaischew, R.: Phys. Stat. Solidi 13, 577 (1966)

    Article  ADS  Google Scholar 

  99. Budurov, S., Spassov, T., Marchev, K.: J. Mater. Sci. 22, 3485 (1987)

    Article  ADS  Google Scholar 

  100. Bueche, F.: Physical Properties of Polymers. Interscience Publishers, New York (1962)

    Google Scholar 

  101. Buff, F.P., Kirkwood, J.G.: J. Chem. Phys. 18, 991 (1950)

    Article  ADS  Google Scholar 

  102. Burckhardt, H.G., Trömel, M.: Acta Cryst. C 39, 1322 (1981)

    Google Scholar 

  103. Burnett, D.G., Douglas, R.W.: Phys. Chem. Glass. 12, 117 (1971)

    Google Scholar 

  104. Burton, W.K., Cabrera, N.: Discuss. Faraday Soc. 5, 33 (1949)

    Article  Google Scholar 

  105. Burton, W.K., Cabrera, N., Frank, F.C.: Phil. Trans. R. Soc. (Lond.) A 243, 299 (1951)

    Google Scholar 

  106. Cahn, J.W.: Acta Met. 8, 554 (1960)

    Article  Google Scholar 

  107. Cahn, R.W.: Nature 257, 356 (1975)

    ADS  Google Scholar 

  108. Cahn, R.W.: Alloys rapidly solidified from the melt. In: Cahn, R.W., Haasen, P. (eds.) Physical Metallurgy, 3rd edn, pp. 2399–2500. North-Holland Physics Publishing House, Amsterdam/Oxford/New York/Tokyo (1983)

    Google Scholar 

  109. Cahn, R.W., Haasen, P. (eds.): Physical Metallurgy, 3rd edn. North-Holland Physics Publishing House, Amsterdam/Oxford/New York/Tokyo (1983)

    Google Scholar 

  110. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258 (1958); 31, 688 (1959)

    Google Scholar 

  111. Cahn, J.W., Hillig, W.B., Sears, G.W.: Acta Met. 12, 1421 (1964)

    Article  Google Scholar 

  112. Calef, D.F., Deutch, J.M.: Ann. Rev. Phys. Chem. 34, 493 (1983)

    Article  ADS  Google Scholar 

  113. Cargill, G.S.: Structure of metallic alloy glasses. In: Ebenreich, H., Seitz, F. (eds.) Solid State Physics, vol. 30, p. 227. Academic, New York (1975)

    Google Scholar 

  114. Cargill, S.: Recurring Themes in the Structure of Glassy Solids. In: Goldstein, M., Simha, R. (eds.) The Glass Transition and the Nature of the Glassy State, vol. 279, p. 208. Annals New York Academy of Sciences, New York (1976)

    Google Scholar 

  115. Cernuschi, F., Eyring, H.: J. Chem. Phys. 7, 547 (1939)

    Article  ADS  Google Scholar 

  116. Chalmers, B., King, R. (eds.): Progress in Metal Physics, vol. 6. Pergamon Press, London/New York (1956)

    Google Scholar 

  117. Chandrasekhar, S.: Rev. Mod. Phys. 15, 1 (1943)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  118. Charles, R.J.: Glass Technol. 12, 24 (1971)

    Google Scholar 

  119. Chen, H.S., Turnbull, D.: J. Appl. Phys. 38, 3646 (1967)

    Article  ADS  Google Scholar 

  120. Chen, H.S., Turnbull, D.: J. Chem. Phys. 48, 2560 (1968)

    Article  ADS  Google Scholar 

  121. Chen, H.S.: J. Non Cryst. Solids 22, 135 (1976)

    Article  ADS  Google Scholar 

  122. Chen, H.S.: Structure and properties of metallic glasses. In: Gaskall, P.H. (ed.) The Structure of Non-crystalline Materials. Symposium Proceedings, Cambridge, England, p. 79. Taylor and Francis, London (1977)

    Google Scholar 

  123. Chernov, A.A.: Formation of crystals. In: Modern Crystallography, vol. 3. Nauka Publishers, Moscow (1980, in Russian)

    Google Scholar 

  124. Chernov, A.A.: Z. Phys. Chem. (Leipzig) 269, 941 (1988)

    Google Scholar 

  125. Chopra, K.L.: Thin Film Phenomena. McGraw Hill, New York (1962)

    Google Scholar 

  126. Christian, J.W.: The Theory of Transformations in Metals and Alloys. Oxford University Press, Oxford (1975)

    Google Scholar 

  127. Cohen, M., Turnbull, D.: J. Chem. Phys. 59, 3639 (1959)

    Google Scholar 

  128. Cohen, M., Turnbull, D.: Nature 189, 131 (1961)

    Article  ADS  Google Scholar 

  129. Collins, F.C.: Z. Elektrochem. 59, 404 (1955)

    Google Scholar 

  130. Cornelissen, J., van Leeuwen, J., Waterman, H.-I.: Chem. et. Ind. 77(1), 69 (1957)

    Google Scholar 

  131. Cook, H.E.: Acta Met. 18, 297 (1970)

    Article  Google Scholar 

  132. Cooper, A.: J. Non Cryst. Solids 95–96, 24 (1971)

    Google Scholar 

  133. Cooper, A.: Crystal growth in network liquids by structure rearrangement. In: Freeman, S.W., Hench, I.I. (eds.) Advances in Nucleation and Crystallization in Glasses, p. 123. American Chemical Society, Columbus (1971)

    Google Scholar 

  134. Cooper, A.R.: J. Non Cryst. Solids 49, 1 (1982)

    Article  ADS  Google Scholar 

  135. Cooper, A., Gupta, A.: Phys. Chem. Glass. 23, 44 (1982)

    Google Scholar 

  136. Cormia, R.L., Mackenzie, J.D., Turnbull, D.: J. Appl. Phys. 34, 2239 (1963)

    Article  ADS  Google Scholar 

  137. Courtney, W.G.: J. Chem. Phys. 36, 2018 (1962)

    Article  ADS  Google Scholar 

  138. Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)

    MATH  Google Scholar 

  139. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)

    Google Scholar 

  140. Danilov, V.I., Malkin, V.I.: Zh. Fiz. Khim. 28, 1837 (1934)

    Google Scholar 

  141. Daragan, G.: Glass Ind. 33, 307 (1952)

    Google Scholar 

  142. Davies, R.O., Jones, G.O.: Adv. Phys. 2, 370 (1953); Proc. R. Soc. (Lond.) A217, 26 (1953)

    Google Scholar 

  143. de Bolt, M.A., Easteal, A.J., Macedo, P.M., Moynihan, C.T.: J. Am. Ceram. Soc. 59, 16 (1976)

    Article  Google Scholar 

  144. De Donder, T.: Bull. Acad. Roy. Belg. (Cl.Sc.) 23, 936 (1937); 24, 15 (1938)

    Google Scholar 

  145. De Donder, T., van Rysselberghe, P.: Thermodynamic Theory of Affinity. Stanford University Press, Menlo Park (1936)

    Google Scholar 

  146. de Groot, S.R.: Thermodynamics of Irreversible Processes. North-Holland Publishers, Amsterdam (1952)

    Google Scholar 

  147. de Guzman, J.: Ann. Soc. Espan. Fis. Quim. 11, 353 (1913)

    Google Scholar 

  148. de Reaumur, R.: Memoires l’ Academie des Sciences, Paris (1739)

    Google Scholar 

  149. Debye, P., Menke, H.: Ergebnisse der technischen Röntgenkunde 11 (1931)

    Google Scholar 

  150. Defay, R., Prigogine, I., Bellemans, R., Everett, D.H.: Surface Tension and Adsorption. Longmans, London (1966)

    Google Scholar 

  151. Dehlinger, U.: Theoretische Metallkunde. Springer, Berlin (1955)

    Book  MATH  Google Scholar 

  152. Demkina, L.I.: Investigation of the Dependence of Glass Properties on Composition. Gosizdat, Oboronprom Publishers, Moscow (1958, in Russian)

    Google Scholar 

  153. Demo, P., Kozicek, Z.: Phys. Rev. B 48, 3620 (1993)

    Google Scholar 

  154. Deryaguin, B.V., Fedosseev, V.D.: Carbon 11, 299 (1973)

    Article  Google Scholar 

  155. Dietzel, A.: Glastech. Ber. 22, 212 (1949)

    Google Scholar 

  156. Dietzel, A.: Silikattechnik 7(7), 318 (1956)

    Google Scholar 

  157. Dietzel, A., Brückner, R.: Glastech. Ber. 28, 455 (1955)

    Google Scholar 

  158. Dietzel, A., Brückner, R.: Glastech. Ber. 30, 73 (1957)

    Google Scholar 

  159. Dietzel, A., Deeg, E.: Glastech. Ber. 30, 282 (1957)

    Google Scholar 

  160. Dietzel, A., Poegel, H.J.: Naturwissenschaften 40, 604 (1953)

    Article  ADS  Google Scholar 

  161. Dietzel, A., Wiekert, H.: Glastech. Ber. 29, 1 (1956)

    Google Scholar 

  162. Dobreva, A.: Non-steady state effects in the kinetics of crystallization of polymer melts. Ph.D. thesis, Bulgarian Academy of Sciences, Sofia (1992)

    Google Scholar 

  163. Dobreva, A., Gutzow, I.: J. Cryst. Res. Tech. 20, 863 (1991)

    Article  Google Scholar 

  164. Dobreva, A., Gutzow, I.: J. Non Cryst. Solids 162, 1, 13 (1993)

    Google Scholar 

  165. Dobreva, A., Gutzow, I.: Bulg. Chem. Commun. 27, 103 (1994)

    Google Scholar 

  166. Dobreva, A., Gutzow, I.: J. Non Cryst. Solids 162, 235 (1997)

    Article  Google Scholar 

  167. Doi, M.: J. Polym. Sci. (Polym. Phys.) 18, 1005 (1980)

    Article  ADS  Google Scholar 

  168. Donth, E.-J.: Glasübergang. Wissenschaftliche Taschenbücher Mathematik-Physik, Bd. 271, Akademie-Verlag, Berlin (1981)

    Google Scholar 

  169. Echt, O., Recknagel, E. (eds.): Small Particles and Inorganic Clusters, ISSPIC5, September 1990; Springer Verlag, 1991; see also the Proceedings of the previous symposia on small particles and inorganic clusters

    Google Scholar 

  170. Ehrenfest, P.: Commun. Leiden Univ. 20(Suppl. b75), 628 (1933)

    Google Scholar 

  171. Eitel, W.: Thermochemical Methods in SilicateInvestigation. Rutgers University Press, New Brunswick (1952)

    Google Scholar 

  172. Eitel, W.: The Physical Properties of the Silicates. University of Chicago Press, Chicago (1954)

    Google Scholar 

  173. Eitel, W., Pirani, M., Scheel, K.: Glastechnische Tabellen. Springer, Berlin (1932)

    Google Scholar 

  174. Einstein, A.: Annalen der Physik 17, 549 (1905)

    Article  MATH  ADS  Google Scholar 

  175. Einstein, A.: Verh. Dtsch. Phys. Ges. 16, 820 (1914)

    Google Scholar 

  176. Eldrigde, M.D., Madden, P.A., Frenkel, D.: Nature 365, 35 (1993)

    Article  ADS  Google Scholar 

  177. Erofeev, B.V.: Dispersity of solid phases in connection with the kinetics of their formation. In: Collected Works of the Belorussian Academy of Sciences, Institute of Chemistry. Academy of Sciences Press, Minsk, p. 13 (1956, in Russian)

    Google Scholar 

  178. Evstropyev, K.S.: Crystallite theory of the structure of glass. In: Lebedev, A.A. (ed.) Structure of Glass, Proc. Conf. on Glass, Leningrad, Nov. 1953, p. 9. Soviet Acad., Moscow-Leningrad (1955)

    Google Scholar 

  179. Eyring, H.: J. Chem. Phys. 4, 283 (1936)

    Article  ADS  Google Scholar 

  180. Farkas, L.: Z. Phys. Chem. 125, 236 (1927)

    Google Scholar 

  181. Farley, F.J.M.: The theory of the condensation of supersaturated ion-free vapour. Proc. R. Soc. (Lond.) A 212, 530 (1952)

    Google Scholar 

  182. Feder, J., Russell, K.C., Lothe, J., Pound, G.M.: Adv. Phys. 15, 117 (1966)

    Article  ADS  Google Scholar 

  183. Feder, J.: Fractals. Plenum Press, New York/London (1988)

    MATH  Google Scholar 

  184. Feenstra, T.P., de Bryun, P.L.: J. Colloid Interface Sci. 84, 66 (1981)

    Article  Google Scholar 

  185. Feenstra, T.P., van Straaten, H.A., de Bryun, P.L.: J. Colloid Interface Sci. 80, 255 (1981)

    Article  Google Scholar 

  186. Feltz, A.: Amorphe und Glasartige Anorganische Festkörper. Akademie-Verlag, Berlin (1983)

    Google Scholar 

  187. Fermi, E.: Thermodynamics. Prentice-Hall, New York (1937)

    Google Scholar 

  188. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1961)

    Google Scholar 

  189. Fichtenholz, G.M.: A Course in Differential and Integral Calculus, vol. 1. Nauka Publishers, Moscow (1966, in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutzow, I.S., Schmelzer, J.W.P. (2013). Brief Overview on Some New Developments. In: The Vitreous State. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34633-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34633-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34632-3

  • Online ISBN: 978-3-642-34633-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics