Skip to main content

Distributed Pinning-Controlled Flocking with a Virtual Leader

  • Chapter
Pinning Control of Complex Networked Systems

Abstract

This chapter introduces a flocking control problem in the presence of a virtual leader and only a fraction of informed agents. We solve the distributed collective tracking problem via pinning control approach. We first show that, even when only a fraction of agents are informed, the proposed flocking algorithm still enables all the informed agents to move with the desired constant velocity, and an uninformed agent to also move with the same desired velocity if it can be influenced by the informed agents from time to time during the evolution. In the situation where the virtual leader travels with a varying velocity, we propose a novel flocking algorithm and show that the proposed flocking algorithm enables the asymptotic tracking of the virtual leader. That is, the position and velocity of the center of mass of all agents will converge exponentially to those of the virtual leader. The convergent rate is also given. Numerical simulation demonstrates that a very small group of the informed agents can cause most of the agents to move with the desired velocity and the larger the informed group is the bigger portion of agents will move with the desired velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw E (1975) Fish in schools. Nat Hist 84:40–45

    Google Scholar 

  2. Okubo A (1986) Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv Biophys 22:1–94

    Article  Google Scholar 

  3. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21:25–34

    Article  Google Scholar 

  4. Vicsek T, Cziro’ok A, Ben-Jacob E, Cohen O, Shochet I (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229

    Article  Google Scholar 

  5. Levine H, Rappel WJ (2001) Self organization in systems of self-propelled particles. Phys Rev E 63:208–211

    Article  Google Scholar 

  6. Shimoyama N, Sugawara K, Mizuguchi T, Hayakawa Y, Sano M (1996) Collective motion in a system of motile elements. Phys Rev Lett 76:3870–3873

    Article  Google Scholar 

  7. Mogilner A, Edelstein-Keshet L (1996) Spatio-temporal order in populations of self-aligning objects: formation of oriented patches. Physica D 89:346–367

    Article  MathSciNet  MATH  Google Scholar 

  8. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38:534–570

    Article  MathSciNet  MATH  Google Scholar 

  9. Toner J, Tu Y (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58:4828–4858

    Article  MathSciNet  Google Scholar 

  10. Toner J, Tu Y (2005) Hydrodynamics and phases of flocks. Ann Phys 318:170–244

    Article  MathSciNet  MATH  Google Scholar 

  11. Akyildiz I, Su W, Sankarasubramniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40:102–114

    Article  Google Scholar 

  12. Crowther B (2003) Flocking of autonomous unmanned air vehicles. Aeronaut J 107:99–109

    Google Scholar 

  13. Balch T, Arkin RC (1998) Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom 14:926–939

    Article  Google Scholar 

  14. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49:1520–1533

    Article  MathSciNet  Google Scholar 

  15. Ren W, Beard RW (2005) Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans Autom Control 50:655–661

    Article  MathSciNet  Google Scholar 

  16. Hong Y, Gao L, Cheng D, Hu J (2007) Lyapunov-based approach to multi-agent systems with switching jointly-connected interconnection. IEEE Trans Autom Control 52:943–948

    Article  MathSciNet  Google Scholar 

  17. Gazi V, Passino KM (2003) Stability analysis of swarms. IEEE Trans Autom Control 48:692–697

    Article  MathSciNet  Google Scholar 

  18. Liu Y, Passino KM, Polycarpou MM (2003) Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology. IEEE Trans Autom Control 48:76–95

    Article  MathSciNet  Google Scholar 

  19. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–98

    Article  Google Scholar 

  20. Tanner H (2004) Flocking with obstacle avoidance in switching networks of interconnected vehicles. In: IEEE international conference robotics and automation, pp 3006–3011

    Google Scholar 

  21. Olfati-Saber R, Murray RM (2003) Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. In: Proc of the 42nd IEEE conference on decision and control, pp 2022–2028

    Google Scholar 

  22. Chang DE, Shadden S, Marsden J, Olfati-Saber R (2003) Collision avoidance for multiple agent systems. In: Proc of the 42nd IEEE conference on decision and control, pp 539–543

    Google Scholar 

  23. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile agents using nearest neighbor rules. IEEE Trans Autom Control 48:988–1001

    Article  MathSciNet  Google Scholar 

  24. Shi H, Wang L, Chu TG (2006) Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D 213:51–65

    Article  MathSciNet  MATH  Google Scholar 

  25. Ogren P (2002) Formation with a mission: stable coordination of vehicle group maneuvers. In: Symposium on mathematical theory of network and systems, pp 1–22

    Google Scholar 

  26. Leonard N, Friorelli E (2001) Virtual leaders, artificial potentials and coordinated control of groups. In: Proc of the 40th IEEE conference on decision and control, pp 2968–2973

    Google Scholar 

  27. Tanner HG, Jadbabaie A, Pappas GJ (2003) Stable flocking of mobile agents, part I: fixed topology. In: Proc of the 42nd IEEE conference on decision and control, pp 2010–2015

    Google Scholar 

  28. Tanner HG, Jadbabaie A, Pappas GJ (2003) Stable flocking of mobile agents, part II: dynamic topology. In: Proc of the 42nd IEEE conference on decision and control, pp 2016–2021

    Google Scholar 

  29. Olfati-Saber R (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control 51:401–420

    Article  MathSciNet  Google Scholar 

  30. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    Article  Google Scholar 

  31. Su H, Wang X, Lin Z (2009) Flocking of multi-agents with a virtual leader. IEEE Trans Autom Control 54:293–307

    Article  MathSciNet  Google Scholar 

  32. Godsil C, Royle G (2001) Algebraic graph theory. Graduate texts in mathematics, vol 207. Springer, New York

    Book  MATH  Google Scholar 

  33. Horn RA, Johson CR (1987) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  34. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  35. Cao Y, Ren W (2012) Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans Autom Control 57:33–48

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, H., Wang, X. (2013). Distributed Pinning-Controlled Flocking with a Virtual Leader. In: Pinning Control of Complex Networked Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34578-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34578-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34577-7

  • Online ISBN: 978-3-642-34578-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics