Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 459))

  • 1095 Accesses

Abstract

Time-of-Flight (ToF) estimation is a basic building block in many metrological applications. Performance criteria for these applications are the variance and the bias of the derived delay estimate. From a signal processing point of view chaotic signals exhibit properties which make them well suited for metrological applications. In this chapter we experimentally investigate the applicability of synchronized chaotic systems in a ToF measurement system. In particular, we show that the choice of the numerical solver has a significant impact on the estimation performance. We further present a new delay estimator based on Poincaré intersections and compare the resultant estimation performance with the performance of a standard correlation-based delay estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H.: Analysis of Observed Chaotic Data. Springer (1996)

    Google Scholar 

  2. Abarbanel, H., Brown, R., Kennel, M.: Lyapunov exponents in chaotic systems: Their importance and their evaluation using observed data. International Journal of Modern Physics B 5(9), 1347–1375 (1991)

    Article  MATH  Google Scholar 

  3. Alonge, F., Branciforte, M., Motta, F.: A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems. IEEE Transactions on Instrumentation and Measurement 58(2), 318–329 (2009)

    Article  Google Scholar 

  4. Cespedes, I., Huang, Y., Ophir, J., Spratt, S.: Methods for estimation of subsample time delays of digitized echo signals. Ultrasonic Imaging 17, 142–171 (1995)

    Article  Google Scholar 

  5. Feldmann, U., Hasler, M., Schwarz, W.: Communication by chaotic signals: The inverse system approach. International Journal of Circuit Theory and Applications 24, 551–579 (1996)

    Article  MATH  Google Scholar 

  6. Freedman, A.E.: Transmission channel compensation in self-synchronizing chaotic systems (1995)

    Google Scholar 

  7. Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics 69(1), 32–47 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing lyapunov exponents. Progress of Theoretical Physics 83(5), 875–893 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer (1989)

    Google Scholar 

  10. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Physical Review A 44(4), 2374–2383 (1991)

    Article  Google Scholar 

  11. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Physical Review Letters 80(10), 2109–2112 (1998)

    Article  Google Scholar 

  12. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Fundamentals of synchronization in chaotic systems, concepts and applications. Chaos 7(4), 520–543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sorrentino, F., DeLellis, P.: Estimation of communication-delays through adaptive synchronization of chaos. Chaos, Solitons and Fractals 45(1), 35–46 (2012)

    Article  Google Scholar 

  14. Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors. Springer-Verlag New York Inc., New York 10010 (1982)

    Book  Google Scholar 

  15. Spears, B.K., Tufillario, N.B.: A chaotic lock-in amplifier. American Journal of Physics 76(3), 213–217 (2008)

    Article  Google Scholar 

  16. Stavroulakis, P.: Chaos Applications in Telecommunications. CRC Press, Inc., Boca Raton (2005)

    Book  Google Scholar 

  17. Wallinger, C.F., Brandner, M.: Numerical aspects of the synchronization performance of discretized dynamical systems. In: 19th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (March 2011)

    Google Scholar 

  18. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Physica D 16, 285–317 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. Wallinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallinger, C.F., Brandner, M. (2013). Time-of-Flight Estimation Using Synchronized Chaotic Systems. In: Kyamakya, K., Halang, W., Mathis, W., Chedjou, J., Li, Z. (eds) Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering. Studies in Computational Intelligence, vol 459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34560-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34560-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34559-3

  • Online ISBN: 978-3-642-34560-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics