Skip to main content

RGD-Based Molecular Probes for Integrin α v β3 Imaging

  • Chapter
  • 3684 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

The cell adhesion molecule integrin α v β3 is an important player in the process of tumor angiogenesis and metastasis. It is expressed on activated endothelial cells as well as some tumor cells. Non-invasive imaging of integrin α v β3 expression would provide a unique means of characterizing the biological aggressiveness of a malignant tumor in an individual patient. In this chapter, we will summarize the current development and applications of arginine-glycine-aspartic acid (RGD)- based molecular probes for molecular imaging of integrin α v β3 imaging using either a single molecular imaging modality (magnetic resonance imaging, ultrasound, optical, single photon emission computed tomography, and positron emission tomography) or a combination of the different modalities. The strategies that are currently used to optimize the RGD probes will be briefly introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mankoff, D. A. A. (2007). “Definition of molecular imaging”, The Journal of Nuclear Medicine 48: 18–21.

    Google Scholar 

  2. Cai, W., S. S. Gambhir & X. Chen (2008). “Molecular imaging of tumor vasculature”, Methods Enzymol 445: 141–176.

    Article  PubMed  CAS  Google Scholar 

  3. Cai, W., G. Niu & X. Chen (2008). “Imaging of integrins as biomarkers for tumor angiogenesis”, Current Pharmaceutical Design 14: 2943–2973.

    Article  PubMed  CAS  Google Scholar 

  4. Massoud, T. F. & S. S. Gambhir (2003). “Molecular imaging in living subjects: seeing fundamental biological processes in a new light”, Genes & Development 17: 545–580.

    Article  CAS  Google Scholar 

  5. Beyer, T., D. W. Townsend, T. Brun, P. E. Kinahan, M. Charron, R. Roddy, et al. (2000). “A combined PET/CT scanner for clinical oncology”, The Journal of Nuclear Medicine 41: 1369–1379.

    CAS  Google Scholar 

  6. Even-Sapir, E., H. Lerman, G. Lievshitz, A. Khafif, D. M. Fliss, A. Schwartz, et al. (2003). “Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system”, The Journal of Nuclear Medicine 44: 1413–1420.

    Google Scholar 

  7. Margolis, D. J., J. M. Hoffman, R. J. Herfkens, R. B. Jeffrey, A. Quon & S. S. Gambhir (2007). “Molecular imaging techniques in body”, Imaging Radiology 245: 333–356.

    Google Scholar 

  8. Bergers, G. & L. E. Benjamin (2003). “Tumorigenesis and the angiogenic switch”, Nat Rev Cancer 3: 401–410.

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet, P & R. K. Jain (2000). “Angiogenesis in cancer and other diseases”, Nature 407: 249–257.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma, R. A., A. L. Harris, A. G. Dalgleish, W. P. Steward & K. J. O’Byrne (2001). “Angiogenesis as a biomarker and target in cancer chemoprevention”, The Lancet Oncology 2: 726–732.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman, J. (1995). “Angiogenesis in cancer, vascular, rheumatoid and other disease”, Nature Medicine 1: 27–31.

    Article  PubMed  CAS  Google Scholar 

  12. Hynes, R. O. (2002). “Integrins: Bidirectional, allosteric signaling machines”, Cell 110: 673.

    Article  PubMed  CAS  Google Scholar 

  13. Hood, J. D. & D. A. Cheresh (2002). “Role of integrins in cell invasion and migration”, Nature Reviews Cancer 2: 91.

    Article  PubMed  Google Scholar 

  14. Brooks, P. C., R. A. Clark & D. A. Cheresh (1994). “Requirement of vascular integrin αvβ3 for angiogenesis”, Science 264: 569–571.

    Article  PubMed  CAS  Google Scholar 

  15. Eliceiri, B. P., D. A. Cheresh (1999). “The role of alphav integrins during angiogenesis: Insights into potential mechanisms of action and clinical development”, The Journal of Clinical Investigation 103: 1227–1230.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, Z., F. Wang & X. Chen (2008) “Integrin αvβ3-targeted cancer therapy”, Drug Development Research 69: 329–339.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, S. (2006). “Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging”, Molecular Pharmacology 3: 472–487.

    Article  CAS  Google Scholar 

  18. Pathak, A. P., B. Gimi, K. Glunde, E. Ackerstaff, D. Artemov & Z. M. Bhujwalla (2004). “Molecular and functional imaging of cancer: Advances in MRI and MRS”, Methods Enzymol 386: 3–60.

    PubMed  CAS  Google Scholar 

  19. Ke, T., E. K. Jeong, X. Wang, Y. Feng, D. L. Parker & Z. R. Lu (2007). “RGD targeted poly (L-glutamic acid)-cystamine-(Gd-DO3A) conjugate for detecting angiogenesis biomarker αvβ3 integrin with MRT, mapping”, International Journal of Nanomedicine 2: 191–199.

    PubMed  CAS  Google Scholar 

  20. Zhang, C., M. Jugold, E. C. Woenne, T. Lammers, B. Morgenstern, M. M. Mueller, et al. (2007). “Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner”, Cancer Res 67: 1555–1562.

    Article  PubMed  CAS  Google Scholar 

  21. Kiessling, F., J. Huppert, C. Zhang, J. Jayapaul, S. Zwick, E. C. Woenne, et al. (2009). “RGD-labeled USPIO inhibits adhesion and endocytotic activity of αvβ3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment”, Radiology 253: 462–469.

    Article  PubMed  Google Scholar 

  22. Ellegala, D. B., H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, et al. (2003). “Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3”, Circulation 108: 336–341.

    Article  PubMed  Google Scholar 

  23. Palmowski, M., J. Huppert, G. Ladewig, P. Hauff, M. Reinhardt, M. M. Mueller, et al. (2008). “Molecular profiling of angiogenesis with targeted ultrasound imaging: Early assessment of antiangiogenic therapy effects”, Molecular Cancer Therapeutics 7: 101–109.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, X., R. Park, A. H. Shahinian, M. Tohme, V. Khankaldyyan, M. H. Bozorgzadeh, et al. (2004). “18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis”, Nuclear Medicine and Biology 31: 179–189.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, Y., X. Zhang, Z. Xiong, Z. Cheng, D. R. Fisher, S. Liu, et al. (2005). “MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide”, The Journal of Nuclear Medicine 46: 1707–1718.

    CAS  Google Scholar 

  26. Liu, Z., S. Liu, G. Niu, F. Wang, S. Liu & X. Chen. “Optical imaging of integrin αvβ3 expression with near-infrared fluorescent RGD dimer with tetra (ethylene glycol) linkers”, Mol Imaging.

    Google Scholar 

  27. Cai, W., D. W. Shin, K. Chen, O. Gheysens, Q. Cao, S. X. Wang, et al. (2006). “Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects”, Nano Letters 6: 669–676.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, S., W. Y. Hsieh, Y. S. Kim, S. I. Mohammed (2005). “Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer”, Bioconjugate Chemistry 6: 1580–1588.

    Article  Google Scholar 

  29. Jia, B., J. Shi, Z. Yang, B. Xu, Z. Liu, H. Zhao, et al. (2006). “99mTc-labeled cyclic RGDfK dimer: Initial evaluation for SPECT imaging of glioma integrin αvβ3 expression”, Bioconjugate Chemistry 17: 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, S., Z. He, W. Y. Hsieh, Y. S. Kim & Y. Jiang (2006). “Impact of PKM linkers on biodistribution characteristics of the 99mTc-labeled cyclic RGDfK dimer”, Bioconjugate Chemistry 17: 1499–1507.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, S., W. Y. Hsieh, Y. Jiang, Y. S. Kim, S. G. Sreerama, X. Chen, et al. (2007). “Evaluation of a 99mTc-labeled cyclic RGD tetramer for noninvasive imaging integrin αvβ3-positive breast cancer”, Bioconjugate Chemistry 18: 438–446.

    Article  PubMed  Google Scholar 

  32. Van Hagen, P. M., W. A. Breeman, H. F. Bernard, M. Schaar, C. M. Mooij, A. Srinivasan, et al. (2000). “Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy”, International Journal of Cancer 90: 186–198.

    Article  Google Scholar 

  33. Janssen, M., C. Frielink, I. Dijkgraaf, W. Oyen, D. S. Edwards, S. Liu, et al. (2004). “Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation”, Cancer Biother Radiopharm 19: 399–404.

    PubMed  CAS  Google Scholar 

  34. Dijkgraaf, I., S. Liu, J. A. Kruijtzer, A. C. Soede, W. J. Oyen, R. M. Liskamp, et al. (2007). “Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide”, Nuclear Medicine and Biology 34: 29–35.

    Article  PubMed  CAS  Google Scholar 

  35. Jia, B., Z. Liu, J. Shi, Z. Yu, Z. Yang & H. Zhao, et al. (2008). “Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer”, Bioconjugate Chemistry 19: 201–210.

    Article  PubMed  CAS  Google Scholar 

  36. Shi, J., Z. Liu, B. Jia, Z. Yu, H. Zhao, F. Wang (2010). “Potential therapeutic radiotracers: Preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer”, Amino Acids 39: 111–120.

    Article  PubMed  CAS  Google Scholar 

  37. Li, I. H., W. S. Huang, C. B. Yeh, M. H. Liao, C. C. Chen, L. H. Shen, et al. (2009). “Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and Parkinsonian monkey brains”, Nuclear Medicine and Biology 36: 605–611.

    Article  PubMed  CAS  Google Scholar 

  38. Du, Y. & E. C. Frey (2009). “Quantitative evaluation of simultaneous reconstruction with model-based crosstalk compensation for 99mTc/123I dual-isotope simultaneous acquisition brain SPECT”, Medical Physics 36: 2021–2033.

    Article  PubMed  CAS  Google Scholar 

  39. Berman, D. S., X. Kang, B. Tamarappoo, A. Wolak, S. W. Hayes, R. Nakazato, et al. (2009). “Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging”, JACC Cardiovasc Imaging 2: 273–282.

    Article  PubMed  Google Scholar 

  40. Gambhir, S. S. (2002). “Molecular imaging of cancer with positron emission tomography”, Nature Reviews Cancer 2: 683–693.

    Article  PubMed  CAS  Google Scholar 

  41. Liu, Z., Y. Yan, S. Liu, F. Wang & X. Chen (2009). “18F, 64Cu and 68Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer”, Bioconjugate Chemistry 20: 1016–1025.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, Z., Z. B. Li, W. Cai, L. He, F. T. Chin, F. Li, et al. (2007). “18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): Synthesis and microPET imaging of αvβ3 integrin expression”, Journal of Nuclear Medicine and Molecular Imaging 34(11): 1823–1831.

    Article  CAS  Google Scholar 

  43. Wu, Z., Z. B. Li, K. Chen, W. Cai, L. He, F. T. Chin, et al. (2007). “MicroPET of tumor integrin alpha (v)beta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4)”, The Journal of Nuclear Medicine 48: 1536–1544.

    Article  CAS  Google Scholar 

  44. Liu, Z., S. Liu, F. Wang, S. Liu & X. Chen (2009). “Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers”, European Journal of Nuclear Medicine and Molecular Imaging 36: 1296–1307.

    Article  PubMed  CAS  Google Scholar 

  45. Haubner, R., W. A. Weber, A. J. Beer, E. Vabuliene, D. Reim, M. Sarbia, et al. (2005). “Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD”, PLoS Medicine 2: e70.

    Article  PubMed  Google Scholar 

  46. Beer, A. J., M. Niemeyer, J. Carlsen, M. Sarbia, J. Nahrig, P. Watzlowik, et al. (2008). “Patterns of alpha (v)beta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET”, The Journal of Nuclear Medicine 49: 255–259.

    Article  Google Scholar 

  47. Li, Z. B., K. Chen & X. Chen (2008). “68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression”, European Journal of Nuclear Medicine and Molecular Imaging 35: 1100–1108.

    Article  PubMed  CAS  Google Scholar 

  48. Liu, Z., G. Niu, J. Shi, S. Liu, F. Wang, S. Liu, et al. (2009). “68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging”, European Journal of Nuclear Medicine and Molecular Imaging 36: 947–957.

    Article  PubMed  CAS  Google Scholar 

  49. Liu, S. (2009). “Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers: Maximizing binding affinity via bivalency”, Bioconjugate Chemistry 20: 2199–2213.

    Article  PubMed  CAS  Google Scholar 

  50. Chen, X., Y. Hou, M. Tohme, R. Park, V. Khankaldyyan, I. Gonzales-Gomez, et al. (2004). “Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression”, The Journal of Nuclear Medicine 45: 1776–1783.

    CAS  Google Scholar 

  51. Chen, X., R. Park, M. Tohme, A. H. Shahinian, J. R. Bading & P. S. Conti (2004). “MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F-and 64Cu-labeled RGD peptide”, Bioconjugate Chemistry 15: 41–49.

    Article  PubMed  Google Scholar 

  52. Chen, X., E. Sievers, Y. Hou, R. Park, M. Tohme, R. Bart, et al. (2005). “Integrin αvβ3-targeted imaging of lung cancer”, Neoplasia 7: 271–279.

    Article  PubMed  CAS  Google Scholar 

  53. Shi, J., Y. S. Kim, S. Zhai, Z. Liu, X. Chen & S. Liu (2009). “Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD peptide dimers with Gly3 and PEG4 linkers”, Bioconjugate Chemistry 20: 750–759.

    Article  PubMed  CAS  Google Scholar 

  54. Houston, J. P., S. Ke, W. Wang, C. Li & E. M. Sevick-Muraca (2005). “Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe”, Journal of Biomedical Optics 10: 054010.

    Article  PubMed  Google Scholar 

  55. Li, C., W. Wang, Q. Wu, S. Ke, J. Houston, E. Sevick-Muraca, et al. (2006). “Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe”, Nuclear Medicine and Biology 33: 349–358.

    Article  PubMed  CAS  Google Scholar 

  56. Cai, W., K. Chen, Z. B. Li, S. S. Gambhir, X. Chen (2007). “Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature”, The Journal of Nuclear Medicine 48: 1862–1870.

    Article  CAS  Google Scholar 

  57. Lee, H. Y., Z. Li, K. Chen, A. R. Hsu, C. Xu, J. Xie, et al. (2008). “PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles”, The Journal of Nuclear Medicine 49: 1371–1379.

    Article  CAS  Google Scholar 

  58. Shi, J., L. Wang, Y. S. Kim, S. Zhai, Z. Liu, X. Chen, et al. (2008). “Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers”, Journal of Medicinal Chemistry 51: 7980–7990.

    Article  PubMed  CAS  Google Scholar 

  59. Liu, Z., Z. B. Li, Q. Cao, S. Liu, F. Wang & X. Chen (2009). “Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer”, The Journal of Nuclear Medicine 50: 1168–1177.

    Article  CAS  Google Scholar 

  60. Dijkgraaf, I., J. A. Kruijtzer, S. Liu, A. C., W. J. Soede Oyen, F. H. Corstens, et al. (2007). “Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides”, European Journal of Nuclear Medicine and Molecular Imaging 34: 267–273.

    Article  PubMed  CAS  Google Scholar 

  61. Janssen, M., W. J. Oyen, L. F. Massuger, C. Frielink, I. Dijkgraaf, D. S. Edwards, et al. (2002). “Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting”, Cancer Biother Radiopharm 17: 641–646.

    Article  PubMed  CAS  Google Scholar 

  62. Wu, Y., X. Zhang, Z. Xiong, Z. Cheng, D. R. Fisher, S. Liu, et al. (2005). “MicroPET imaging of glioma integrin alpha (v)beta3 expression using 64Cu-labeled tetrameric RGD peptide”, The Journal of Nuclear Medicine 46: 1707–1718.

    CAS  Google Scholar 

  63. Li, Z. B., W. Cai, Q. Cao, K. Chen, Z. Wu, L. He, et al. (2007). “64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression”, The Journal of Nuclear Medicine 48: 1162–1171.

    Article  CAS  Google Scholar 

  64. Maina, T., B. Nock, S. Mather (2006). “Targeting prostate cancer with radiolabelled bombesins”, Cancer Imaging 6: 153–157.

    Article  PubMed  Google Scholar 

  65. Shi, J., B. Jia, Z. Liu, Z. Yang, Z. Yu, K. Chen, et al. (2008). “99mTc-labeled bombesin (7–14)NH2 with favorable properties for SPECT imaging of colon cancer”, Bioconjugate Chemistry 19: 1170–1178.

    Article  PubMed  CAS  Google Scholar 

  66. Cooper, C. R., C. H. Chay & K. J. Pienta (2002). “The role of αvβ3 in prostate cancer progression”, Neoplasia 4: 191–194.

    Article  PubMed  CAS  Google Scholar 

  67. Liu, Z., Y. Yan, F. T. Chin, F. Wang & X. Chen (2009). “Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN”, Journal of Medicinal Chemistry 52: 425–432.

    Article  PubMed  CAS  Google Scholar 

  68. Li, Z. B., Z. Wu, K. Chen, E. K. Ryu & X. Chen (2008). “18F-labeled BBN-RGD heterodimer for prostate cancer imaging”, The Journal of Nuclear Medicine 49: 453–461.

    Article  CAS  Google Scholar 

  69. Liu, Z., G. Niu, F. Wang, X. Chen (2009). “68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging”, European Journal of Nuclear Medicine and Molecular Imaging 36: 1483–1494.

    Article  PubMed  CAS  Google Scholar 

  70. Onthank, D. C., S. Liu, P. J. Silva, J. A. Barrett, T. D. Harris, S. P. Robinson, et al. (2004). “90Y and 111In complexes of a DOTA-conjugated integrin αvβ3 receptor antagonist: Different but biologically equivalent”, Bioconjugate Chemistry 15: 235–41.

    Article  PubMed  CAS  Google Scholar 

  71. Walsh, S., A. Shah, J. Mond (2003). “Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol”, Antimicrob Agents Chemother 47: 554–558.

    Article  PubMed  CAS  Google Scholar 

  72. Chen, X., R. Park, Y. Hou, V. Khankaldyyan, I. Gonzales-Gomez, M. Tohme, et al. (2004). “MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide”, European Journal of Nuclear Medicine and Molecular Imaging 31: 1081–1089.

    Article  PubMed  CAS  Google Scholar 

  73. Chen, X., R. Park, A. H. Shahinian, J. R. Bading & P. S. Conti (2004). “Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation”, Nuclear Medicine and Biology 31: 11–19.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, L., J. Shi, Y. S. Kim, S. Zhai, B. Jia, H. Zhao, et al. (2009). “Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers”, Molecular Pharmacology 6: 231–245.

    Article  CAS  Google Scholar 

  75. Shi, J., L. Wang, Y. S. Kim, S. Zhai, B. Jia, F. Wang, et al. (2009). “99mTcO (MAG2-3G3-dimer): A new integrin alpha (v)beta3-targeted SPECT radiotracer with high tumor uptake and favorable pharmacokinetics”, European Journal of Nuclear Medicine and Molecular Imaging 36: 1874–1884.

    Article  PubMed  CAS  Google Scholar 

  76. Shi, J., Y. S. Kim, S. Chakraborty, B. Jia, F. Wang & S. Liu (2009). “2-mercaptoacetylglycylglycyl (MAG2) as a bifunctional chelator for 99mTc-labeling of cyclic RGD dimers: Effect of technetium chelate on tumor uptake and pharmacokinetics”, Bioconjugate Chemistry 20: 1559–1568.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, F., Liu, Z. (2013). RGD-Based Molecular Probes for Integrin α v β3 Imaging. In: Molecular Imaging. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34303-2_15

Download citation

Publish with us

Policies and ethics