Skip to main content

Electrochemical Analysis of Cells

  • Chapter
  • First Online:
  • 1261 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

The cell is the basic unit of life, which plays a key role in the development of organisms and participates in almost all physiological processes in vivo. Since the physiological activities of cells are often related to electron transfer and/or electroactive species, electrochemistry is proven to be an effective technique for the analysis of cells, which can be further used in disease diagnosis and drug screening. Therefore, electrochemical analysis of cells has attracted a great many research interests. In recent years, with the development of surface modification technology, molecular recognition and nanotechnology, more and more electrodes with high biocompatibility can be used for cell immobilization, which has greatly promoted the electrochemical analysis of cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang JY, Zhang DM, Xing W, Ma X, Yin YX, Wei Q, Li GX (2008) An approach to assay calcineurin activity and the inhibitory effect of zinc ion. Anal Biochem 375(2):385–387

    Article  CAS  Google Scholar 

  2. Miao P, Liu L, Li Y, Li GX (2009) A novel electrochemical method to detect mercury (II) ions. Electrochem Commun 11(10):1904–1907

    Article  CAS  Google Scholar 

  3. Miao P, Liang ZQ, Liu L, Chen GF (2011) Fabrication of multi-functionalized gold nanoparticles and the application to electrochemical detection of nitrite. Curr Nanosci 7(3):354–358

    Article  CAS  Google Scholar 

  4. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Article  CAS  Google Scholar 

  5. Wang ZY, Liu L, Xu YY, Sun LZ, Li GX (2011) Simulation and assay of protein biotinylation with electrochemical technique. Biosens Bioelectron 26(11):4610–4613

    Article  CAS  Google Scholar 

  6. Yang QL, Zhao J, Zhou ND, Ye ZH, Li GX (2011) Electrochemical sensing telomere-bending motions caused by hTRF1. Biosens Bioelectron 26(5):2228–2231

    Article  CAS  Google Scholar 

  7. Zhao J, Meng WY, Miao P, Yu ZG, Li GX (2008) Photodynamic effect of hypericin on the conformation and catalytic activity of hemoglobin. Int J Mol Sci 9(2):145–153

    Article  CAS  Google Scholar 

  8. Ding L, Du D, Zhang XJ, Ju HX (2008) Trends in cell-based electrochemical biosensors. Curr Med Chem 15(30):3160–3170

    Article  CAS  Google Scholar 

  9. Popovtzer R, Neufeld T, Biran N, Ron EZ, Rishpon J, Shacham-Diamand Y (2005) Novel integrated electrochemical nano-biochip for toxicity detection in water. Nano Lett 5(6):1023–1027

    Article  CAS  Google Scholar 

  10. Slaughter GE, Bieberich E, Wnek GE, Wynne KJ, Guiseppi-Elei A (2004) Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study. Langmuir 20(17):7189–7200

    Article  CAS  Google Scholar 

  11. Nonner W, Eisenberg B (2000) Electrodiffusion in ionic channels of biological membranes. J Mol Liq 87(2–3):149–162

    Article  CAS  Google Scholar 

  12. Huang JY, Chen L, Zhang X, Liu SL, Li GX (2008) Electrochemical studies of ion-channel behavior of annexin V in phosphatidylcholine bilayer membranes. Electrochem Commun 10(3):451–454

    Article  CAS  Google Scholar 

  13. Alcantara K, Munge B, Pendon Z, Frank HA, Rusling JF (2006) Thin film voltammetry of spinach photosystem II. proton-gated electron transfer involving the Mn-4 cluster. J Am Chem Soc 128(46):14930–14937

    Article  CAS  Google Scholar 

  14. Proux-Delrouyre V, Demaille C, Leibl W, Setif P, Bottin H, Bourdillon C (2003) Electrocatalytic investigation of light-induced electron transfer between cytochrome c(6) and photosystem I. J Am Chem Soc 125(45):13686–13692

    Article  CAS  Google Scholar 

  15. Shao ML, Bai HJ, Gou HL, Xu JJ, Chen HY (2009) Cytosensing and evaluation of cell surface glycoprotein based on a biocompatible poly(diallydimethylammonium) doped poly(dimethylsiloxane) film. Langmuir 25(5):3089–3095

    Article  CAS  Google Scholar 

  16. Du D, Ju HX, Zhang XJ, Chen J, Cai J, Chen HY (2005) Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold nanoparticles modified on a methoxysilyl-terminated butyrylchitosan matrix. Biochemistry-Us 44(34):11539–11545

    Article  CAS  Google Scholar 

  17. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411

    Article  CAS  Google Scholar 

  18. Meng FB, Yang JH, Liu T, Zhu XL, Li GX (2009) Electric communication between the inner part of a cell and an electrode: the way to look inside a cell. Anal Chem 81(21):9168–9171

    Article  CAS  Google Scholar 

  19. Liu J, Zhou H, Xu JJ, Chen HY (2011) An effective DNA-based electrochemical switch for reagentless detection of living cells. Chem Commun 47(15):4388–4390

    Article  CAS  Google Scholar 

  20. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  Google Scholar 

  21. Zhao J, Meng FB, Zhu XL, Han K, Liu SL, Li GX (2008) Electrochemistry of mitochondria: a new way to understand their structure and function. Electroanal 20(14):1593–1598

    Article  CAS  Google Scholar 

  22. Zheng XT, Hu WH, Wang HX, Yang HB, Zhou W, Li CM (2011) Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens Bioelectron 26(11):4484–4490

    Article  CAS  Google Scholar 

  23. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell-cycle events. Science 246(4930):629–634

    Article  CAS  Google Scholar 

  24. Kafi MA, Kim TH, An JH, Choi JW (2011) Fabrication of cell chip for detection of cell cycle progression based on electrochemical method. Anal Chem 83(6):2104–2111

    Article  CAS  Google Scholar 

  25. Pappas D, Martinez MM, Reif RD (2010) Detection of apoptosis: a review of conventional and novel techniques. Anal Methods-Uk 2(8):996–1004

    Article  Google Scholar 

  26. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Bio 9(3):231–241

    Article  CAS  Google Scholar 

  27. Thatte U, Dahanukar S (1997) Apoptosis: clinical relevance and pharmacological manipulation. Drugs 54(4):511–532

    Article  CAS  Google Scholar 

  28. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82(2):331–371

    CAS  Google Scholar 

  29. Tong CY, Shi BX, Xiao XJ, Liao HD, Zheng YQ, Shen GL, Tang DY, Liu XM (2009) An Annexin V-based biosensor for quantitatively detecting early apoptotic cells. Biosens Bioelectron 24(6):1777–1782

    Article  CAS  Google Scholar 

  30. Liu T, Zhu W, Yang X, Chen L, Yang RW, Hua ZC, Li GX (2009) Detection of apoptosis based on the interaction between annexin V and phosphatidylserine. Anal Chem 81(6):2410–2413

    Article  CAS  Google Scholar 

  31. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141(5):859–871

    Article  CAS  Google Scholar 

  32. Xiao H, Liu L, Meng FB, Huang JY, Li GX (2008) Electrochemical approach to detect apoptosis. Anal Chem 80(13):5272–5275

    Article  CAS  Google Scholar 

  33. Zhang JJ, Zheng TT, Cheng FF, Zhu JJ (2011) Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels. Chem Commun 47(4):1178–1180

    Article  CAS  Google Scholar 

  34. Zhang JJ, Zheng TT, Cheng FF, Zhang JR, Zhu JJ (2011) Toward the early evaluation of therapeutic effects: an electrochemical platform for ultrasensitive detection of apoptotic cells. Anal Chem 83(20):7902–7909

    Article  CAS  Google Scholar 

  35. Dubiel EA, Martin Y, Vermette P (2011) Bridging the gap between physicochemistry and interpretation prevalent in cell-surface interactions. Chem Rev 111(4):2900–2936

    Article  CAS  Google Scholar 

  36. Gu HY, Chen Z, Sa RX, Yuan SS, Chen HY, Ding YT, Yu AM (2004) The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials 25(17):3445–3451

    Article  CAS  Google Scholar 

  37. Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB (2004) Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials 25(19):4699–4707

    Article  CAS  Google Scholar 

  38. Choi CK, English AE, Jun SK, Kihm KD, Rack PD (2007) An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosens Bioelectron 22(11):2585–2590

    Article  CAS  Google Scholar 

  39. Xiao CD, Lachance B, Sunahara G, Luong JHT (2002) Assessment of cytotoxicity using electric cell-substrate impedance sensing: concentration and time response function approach. Anal Chem 74(22):5748–5753

    Article  CAS  Google Scholar 

  40. Yang LJ, Li YB, Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157: H7. Anal Chem 76(4):1107–1113

    Article  CAS  Google Scholar 

  41. Chen H, Heng CK, Puiu PD, Zhou XD, Lee AC, Lim TM, Tan SN (2005) Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy. Anal Chim Acta 554(1–2):52–59

    Article  CAS  Google Scholar 

  42. Ding L, Hao C, Xue YD, Ju HX (2007) A bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules 8(4):1341–1346

    Article  CAS  Google Scholar 

  43. Ding L, Du D, Wu H, Ju HX (2007) A disposable impedance sensor for electrochemical study and monitoring of adhesion and proliferation of K562 leukaemia cells. Electrochem Commun 9(5):953–958

    Article  CAS  Google Scholar 

  44. Hao C, Ding L, Zhang XJ, Ju HX (2007) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal Chem 79(12):4442–4447

    Article  CAS  Google Scholar 

  45. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saikali Y, Vittori O, Errachid A, Cloarec JP, Martelet C, Jaffrezic-Renault N (2007) Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Anal Chem 79(13):4879–4886

    Article  CAS  Google Scholar 

  46. Ruan CM, Yang LJ, Li YB (2002) Immunobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Anal Chem 74(18):4814–4820

    Article  CAS  Google Scholar 

  47. Varshney M, Li YB (2007) Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157: H7 in food samples. Biosens Bioelectron 22(11):2408–2414

    Article  CAS  Google Scholar 

  48. Radke SM, Alocilja EC (2005) A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens J 5(4):744–750

    Article  CAS  Google Scholar 

  49. Du D, Cai J, Ju HX, Yan F, Chen J, Jiang XQ, Chen HY (2005) Construction of a biomimetic zwitterionic interface for monitoring cell proliferation and apoptosis. Langmuir 21(18):8394–8399

    Article  CAS  Google Scholar 

  50. Cheng MS, Lau SH, Chow VT, Toh CS (2011) Membrane-based electrochemical nanobiosensor for escherichia coli detection and analysis of cells viability. Environ Sci Technol 45(15):6453–6459

    Article  CAS  Google Scholar 

  51. Liu L, Miao P, Xu YY, Tian ZP, Zou ZG, Li GX (2010) Study of Pt/TiO(2) nanocomposite for cancer-cell treatment. J Photoch Photobio B 98(3):207–210

    Article  CAS  Google Scholar 

  52. Yin YM, Cao Y, Xu YY, Li GX (2010) Colorimetric immunoassay for detection of tumor markers. Int J Mol Sci 11(12):5078–5095

    Article  Google Scholar 

  53. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8(3):167–179

    Article  CAS  Google Scholar 

  54. Yang QL, Nie YJ, Zhu XL, Liu XJ, Li GX (2009) Study on the electrocatalytic activity of human telomere G-quadruplex-hemin complex and its interaction with small molecular ligands. Electrochim Acta 55(1):276–280

    Article  CAS  Google Scholar 

  55. Shao ZY, Liu YX, Xiao H, Li GX (2008) PCR-free electrochemical assay of telomerase activity. Electrochem Commun 10(10):1502–1504

    Article  CAS  Google Scholar 

  56. Chen L, Huang JY, Meng FB, Zhou ND (2010) Distinguishing tumor cells via analyzing intracellular telomerase activity. Anal Sci 26(5):535–538

    Article  CAS  Google Scholar 

  57. Yang WQ, Zhu X, Liu QD, Lin ZY, Qiu B, Chen GN (2011) Label-free detection of telomerase activity in HeLa cells using electrochemical impedance spectroscopy. Chem Commun 47(11):3129–3131

    Article  CAS  Google Scholar 

  58. Li Y, Liu BW, Li X, Wei QL (2010) Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method. Biosens Bioelectron 25(11):2543–2547

    Article  CAS  Google Scholar 

  59. Han K, Chen L, Lin ZS, Li GX (2009) Target induced dissociation (TID) strategy for the development of electrochemical aptamer-based biosensor. Electrochem Commun 11(1):157–160

    Article  CAS  Google Scholar 

  60. Han K, Liang ZQ, Zhou ND (2010) Design strategies for aptamer-based biosensors. Sensors-Basel 10(5):4541–4557

    Article  CAS  Google Scholar 

  61. Wang YL, Li D, Ren W, Liu ZJ, Dong SJ, Wang EK (2008) Ultrasensitive colorimetric detection of protein by aptamer: Au nanoparticles conjugates based on a dot-blot assay. Chem Commun 22:2520–2522

    Article  Google Scholar 

  62. Ferreira CSM, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol 27(6):289–301

    Article  CAS  Google Scholar 

  63. Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW, Mallikaratchy P, Sefah K, Yang CYJ, Tan WH (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Nat Acad Sci USA 103(32):11838–11843

    Article  CAS  Google Scholar 

  64. Shao ZY, Li Y, Yang QL, Wang J, Li GX (2010) A novel electrochemical method to detect cell surface carbohydrates and target cells. Anal Bioanal Chem 398(7–8):2963–2967

    Article  CAS  Google Scholar 

  65. de la Escosura-Muniz A, Sanchez-Espinel C, Diaz-Freitas B, Gonzalez-Fernandez A, Maltez-da Costa M, Merkoci A (2009) Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem 81(24):10268–10274

    Google Scholar 

  66. Li HL, Li D, Liu JY, Qin YN, Ren JT, Xu SL, Liu YQ, Mayer D, Wang EK (2012) Electrochemical current rectifier as a highly sensitive and selective cytosensor for cancer cell detection. Chem Commun 48(20):2594–2596

    Article  CAS  Google Scholar 

  67. El-Said WA, Yea CH, Kim H, Oh BK, Choi JW (2009) Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry. Biosens Bioelectron 24(5):1259–1265

    Article  CAS  Google Scholar 

  68. Jia XE, Tan L, Zhou YP, Jiang XF, Xie QJ, Tang H, Yao SZ (2009) Magnetic immobilization and electrochemical detection of leukemia K562 cells. Electrochem Commun 11(1):141–144

    Article  CAS  Google Scholar 

  69. Liu L, Zhu XL, Zhang DM, Huang JY, Li GX (2007) An electrochemical method to detect folate receptor positive tumor cells. Electrochem Commun 9(10):2547–2550

    Article  CAS  Google Scholar 

  70. Zheng TT, Zhang R, Zou LF, Zhu JJ (2012) A label-free cytosensor for the enhanced electrochemical detection of cancer cells using polydopamine-coated carbon nanotubes. Analyst 137(6):1316–1318

    Article  CAS  Google Scholar 

  71. Ding CF, Qian SW, Wang ZF, Qu B (2011) Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface. Anal Biochem 414(1):84–87

    Article  CAS  Google Scholar 

  72. Chen J, Du D, Yan F, Ju HM, Lian HZ (2005) Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem-Eur J 11(5):1467–1472

    Article  CAS  Google Scholar 

  73. Zhang XA, Teng YQ, Fu Y, Xu LL, Zhang SP, He B, Wang CG, Zhang W (2010) Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Anal Chem 82(22):9455–9460

    Article  CAS  Google Scholar 

  74. Zhong X, Bai HJ, Xu JJ, Chen HY, Zhu YH (2010) A reusable interface constructed by 3-aminophenylboronic acid functionalized multiwalled carbon nanotubes for cell capture, release, and cytosensing. Adv Funct Mater 20(6):992–999

    Article  CAS  Google Scholar 

  75. Zhang JJ, Cheng FF, Zheng TT, Zhu JJ (2010) Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein. Anal Chem 82(9):3547–3555

    Article  CAS  Google Scholar 

  76. Cheng W, Ding L, Lei JP, Ding SJ, Ju HX (2008) Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal Chem 80(10):3867–3872

    Article  CAS  Google Scholar 

  77. Cheng W, Ding L, Ding SJ, Yin YB, Ju HX (2009) A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew Chem Int Edit 48(35):6465–6468

    Article  CAS  Google Scholar 

  78. Feng LY, Chen Y, Ren JS, Qu XG (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937

    Article  CAS  Google Scholar 

  79. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867

    Article  CAS  Google Scholar 

  80. Dai Z, Kawde AN, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) Nanoparticle-based sensing of glycan-lectin interactions. J Am Chem Soc 128(31):10018–10019

    Article  CAS  Google Scholar 

  81. Meany DL, Hackler L, Zhang H, Chan DW (2011) Tyramide signal amplification for antibody-overlay lectin microarray: a strategy to improve the sensitivity of targeted glycan profiling. J Proteome Res 10(3):1425–1431

    Article  CAS  Google Scholar 

  82. Ding L, Cheng W, Wang XJ, Ding SJ, Ju HX (2008) Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J Am Chem Soc 130(23):7224–7225

    Article  CAS  Google Scholar 

  83. Li JJ, Xu M, Huang HP, Zhou JJ, Abdel-Halim ES, Zhang JR, Zhu JJ (2011) Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell. Talanta 85(4):2113–2120

    Article  CAS  Google Scholar 

  84. Ding CF, Ge Y, Zhang SS (2010) Electrochemical and electrochemiluminescence determination of cancer cells based on aptamers and magnetic beads. Chem-Eur J 16(35):10707–10714

    Article  CAS  Google Scholar 

  85. Li T, Fan Q, Liu T, Zhu XL, Zhao J, Li GX (2010) Detection of breast cancer cells specially and accurately by an electrochemical method. Biosens Bioelectron 25(12):2686–2689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Li, G., Miao, P. (2013). Electrochemical Analysis of Cells. In: Electrochemical Analysis of Proteins and Cells. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34252-3_4

Download citation

Publish with us

Policies and ethics