Skip to main content

Literature Review: Cardiovascular Disorders and Minerals

  • Chapter
  • First Online:
Minerals and Lipids Profiles in Cardiovascular Disorders in South Asia

Abstract

Tawfeeq et al. (2008) determined the altered status of some essential trace elements and antioxidant minerals in diabetic patients, which could have deleterious influences on the health of diabetics. The mean fasting plasma glucose (FPG) of type I and type II diabetics and BMI of type II diabetics showed statistically significant difference from control group. Mean serum copper of type I and type II diabetics showed statistically significant difference from control group. Simple linear correlation and regression analysis of the FPG level showed strong positive correlation to the Cu and Cu/Zn values in all study groups and negative correlation to the Zn values in all study groups. Also, HbA1c showed strong positive correlation to the Cu and Cu/Zn values among type I diabetics and control groups and negative correlation to the Zn values among type I diabetics and control groups. BMI and duration of diabetes showed no correlation with the Cu, Zn, and Cu/Zn values among all the study groups. They concluded that serum copper and Cu/Zn ratio increase significantly more than healthy control subjects, while serum zinc showed nonsignificantly reduced levels than healthy control participants, both in type I and II diabetes. Simple linear correlation and regression model analysis showed strong positive correlation of serum copper and Cu/Zn ratio as well as strong negative correlation of zinc toward the FPG values in all studied groups and furthermore toward HbA1c in type I diabetes and control group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akyüz F, Önder E, Erden M (1993) Evaluation of serum magnesium, zinc, copper and ascorbic acid levels in patients with hypertension and atherosclerotic heart diseases. Turk J Med Res 11(6):273–276

    Google Scholar 

  • Al-Saleh E, Nandakumaran M, Al-Shammari M, Makhseed M, Sadan T, Harouny A (2005) Maternal-fetal status of copper, iron, molybdenum, selenium and zinc in insulin-dependent diabetic pregnancies. Arch Gynecol Obstet 271(3):212–217

    Article  CAS  Google Scholar 

  • Altura BM, Altura BT (1985) New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. Magnesium 4:226–244

    CAS  Google Scholar 

  • Ascherio A, Hennekens C, Willett WC, Sacks F, Rosner B, Manson J, Witteman J, Stampfer MJ (1996) Prospective study of nutritional factors, blood pressure and hypertension among US women. Hypertension 27(5):1065–1072

    Article  CAS  Google Scholar 

  • Bales CW, Steinman LC, Freeland-Graves JH, Stone JM, Young RK (1986) The effect of age on plasma zinc uptake and taste acuity. Am J Clin Nutr 44:664–669

    CAS  Google Scholar 

  • Bettger W, O’Dell B (1981) A critical physiological role of zinc in the structure and function of biomembranes. Life Sci 28:1425–1438

    Article  CAS  Google Scholar 

  • Canfield WK, Hambidge KM, Johnson LK (1984) Zinc nutriture in type I diabetes mellitus: relationship to growth measures and metabolic control. J Pediatr Gastroenterol Nutr 3(4):577–584

    Article  CAS  Google Scholar 

  • Cappuccio FP, Markandu ND, Beynon GW, Shore AC, Sampson B, MacGregor GA (1985) Lack of effect of oral magnesium on high blood pressure: a double blind study. Br Med J 291:235–238

    Article  CAS  Google Scholar 

  • Choi DW (1998) Zinc and brain injury. Ann Rev Neurosci 21:347–375

    Article  CAS  Google Scholar 

  • Cooper GJ, Chan YK, Dissanayake AM, Leahy FE, Keogh GF, Frampton CM, Gamble GD, Brunton DH, Baker JR, Poppitt SD (2005) Demonstration of a hyperglycemia-driven pathogenic abnormality of Copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes 54(5):1468–1476

    Article  CAS  Google Scholar 

  • Durlach J, Collery P (1984) Magnesium and potassium in diabetes and carbohydrate metabolism. Magnesium 3:315–323

    CAS  Google Scholar 

  • Ekin S, Mert N, Gunduz H, Meral I (2003) Serum sialic acid levels and selected mineral status in patients with type 2 diabetes mellitus. Biol Trace Elem Res 94(3):193–201

    Article  CAS  Google Scholar 

  • Elwood PC, Pickering J (2002) Magnesium and cardiovascular disease: a review of epidemiological evidence. J Clin Basic Cardiol 5:61–66

    CAS  Google Scholar 

  • Ferrara LA, Iannuzzi R, Castaldo A, Iannuzzi A, Dello Russo A, Mancini M (1992) Long-term magnesium supplementation in essential hypertension. Cardiology 81:25–33

    Article  CAS  Google Scholar 

  • Fischer PWF, L’Abbé MR, Giroux A (1990) Effects of age, smoking, drinking, exercise and estrogen use on indices of copper status in healthy adults. Nutr Res 10:1081–1090

    Article  CAS  Google Scholar 

  • Ford ES (1999) Serum magnesium and ischemic heart disease: findings from a national sample of US adults. Int J Epidemiol 28:645–651

    Article  CAS  Google Scholar 

  • Frieden E, Hsieh HS (1976) Ceruloplasmin: the copper transport protein with essential oxidase activity. Adv Enzymol Relat Areas Mol Biol 44:187–236

    CAS  Google Scholar 

  • Fujimoto S (1987) Studies on the relationship between blood trace metal concentration and the clinical status of patients with cerebrovascular disease, gastric cancer and diabetes mellitus. Hokoido Igaku Zasshi 62:913–932

    CAS  Google Scholar 

  • Geleinjoise JM, Witteman JC, den Breeijen JH, Hofman A, de Jong PT, Pols HA, Grobbee DE (1996) Dietary electrolyte intake and blood pressure in older subjects: the Rotterdam Study. J Hypertens 14(6):737–741

    Article  Google Scholar 

  • Goto K, Yasue H, Okumura K, Matsuyama K, Kugiyama K, Miyagi H, Higashi T (1990) Magnesium deficiency detected by intravenous loading test in variant angina pectoris. Am J Cardiol 65:709–712

    Article  CAS  Google Scholar 

  • Halsted JA, Smith JC (1970) Plasma-zinc in health and disease. Lancet 1(7642):322–324

    Article  CAS  Google Scholar 

  • Handjani AM, Smith JC Jr, Herrmann JB, Halsted JA (1974) Serum zinc concentration in acute myocardial infarction. Chest 65:185

    Article  CAS  Google Scholar 

  • Harlan WR (1988) The relationship of blood lead levels to blood pressure in the US population. Environ Health Perspect 78:9–13

    Article  CAS  Google Scholar 

  • Heinecke JW, Rosen H, Chait A (1984) Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest 74:1890–1894

    Article  CAS  Google Scholar 

  • Helgeland K, Haider T, Johnsan J (1982) copper and zinc in human serum in Norway. Relationship to geography, sex and age. Scand J Clin Lab Invest 42(1):35–39

    CAS  Google Scholar 

  • Hennig B, Toborek M, McClain CJ (1996) Antiatherogenic properties of zinc: implications in endothelial cell metabolism. Nutrition 12(10):711–717

    Article  CAS  Google Scholar 

  • Hennig B, Meerarani P, Toborek M, McClain CJ (1999) Antioxidant-like properties of zinc in activated endothelial cells. J Am Coll Nutr 18:152–158

    Article  CAS  Google Scholar 

  • Holecek V, Racek J, Jerabek Z (1995) Administration of multivitamin combinations and trace elements in diabetes. Cas Lek Cesk 134:80–83

    CAS  Google Scholar 

  • Huang KC, Lin WY, Lee LT (2002) Four anthropometric indices and cardiovascular risk factors in Taiwan. Int J Obes Relat Metab Disord 26:1060–1068

    Article  Google Scholar 

  • Hurley LS, Keen CL, Lonnerdal B (1983) Aspects of trace element interactions during development. Fed Proc 42:1735–1739

    CAS  Google Scholar 

  • Institute of Medicine (2002) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Food and Nutrition Board. National Academy Press, Washington, DC, pp 224–257

    Google Scholar 

  • Jain VK, Mohan G (1991) Serum zinc and copper in myocardial infarction. Biol Trace Elem Res 31:317

    Article  CAS  Google Scholar 

  • Kazemi-Bajestani SM, Ghayour-Mobarhan M, Ebrahimi M, Moohebati M, Esmaeili HA, Parizadeh MR, Aghacizadeh R, Ferns GA (2007) Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram. J Trace Elem Med Biol 21:22–28

    Article  CAS  Google Scholar 

  • Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Sarfraz RA, Jalbani N, Ansari R, Shah AQ, Memon AU, Khandhro GA (2008) Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin Chim Acta 389(1–2):114–119

    Article  CAS  Google Scholar 

  • Kinlaw WB, Levine AS, Morley JE, Silvis SE, McClain CJ (1983) Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 75:273–277

    Article  CAS  Google Scholar 

  • Klevay LM (1975) Coronary heart disease: the zinc/copper hypothesis. Am J Clin Nutr 28:764–774

    CAS  Google Scholar 

  • Klevay LM (1989) Ischemic heart disease as copper deficiency. Adv Exp Med Biol 258:197–208

    CAS  Google Scholar 

  • Kosar F, Taskapan C, Kucukbay Z (2007) Serum levels of selenium, zinc and copper in patients with coronary artery ectasia. Indian Heart J 59(1):38–41

    Google Scholar 

  • Kromhout D, Wibowo AAE, Herber RFM (1985) Trace metals and coronary heart disease risk indicators in 152 elderly men (The Zutphen Study). Am J Epidemiol 122:378–385

    CAS  Google Scholar 

  • Kruse-Jarres JD, Rükgauer M (2000) Trace elements in diabetes mellitus. Peculiarities and clinical validity of determinations in blood cells. J Trace Elem Med Biol 14(1):21–27

    Article  CAS  Google Scholar 

  • Landmark K, Urdal P (1993) Serum magnesium and potassium in acute myocardial infarction: relationship to existing beta-blockade and infarct size. Angiology 44:347–352

    Article  CAS  Google Scholar 

  • Levin GE, Mather HM, Pilkington TRE (1981) Tissue magnesium status in diabetes mellitus. Diabetologia 21:131–134

    Article  CAS  Google Scholar 

  • Levine AS, McClain CJ, Handwerger BS, Brown DM, Morley JE (1983) Tissue zinc status of genetically diabetic and streptozotocin-induced diabetic mice. Am J Clin Nutr 37(3):382–386

    CAS  Google Scholar 

  • Liao F, Folsom A, Brancati F (1998) Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 136:480–490

    Article  CAS  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    CAS  Google Scholar 

  • Ma J, Betts NM (2000) Zinc and copper intakes and their major food sources for older adults in the 1994-96 continuing survey of food intakes by individuals (CSF 11). J Nutr 130:2838–2843

    CAS  Google Scholar 

  • Maj-Zurawska M (1994) Clinical findings on human blood with the KONE ISE for Mg. Scand J Clin Lab Invest 54(suppl 217):69–76

    Article  CAS  Google Scholar 

  • Martin-Lagos F, Navarro-Alarcon M, Terres-Martos C, Lopez G, de la Serena H, Lopez-Martinez MC (1997) Serum copper and zinc concentrations in serum from patients with cancer and cardiovascular disease. Sci Total Environ 204:27–35

    Article  Google Scholar 

  • Mather HM, Nisbet JA, Burton GH (1979) Hypomagnesaemia in diabetes. Chim Clin Acta 95:235–242

    Article  CAS  Google Scholar 

  • McCarron DA (1982) Calcium, magnesium, and phosphorus balance in human and experimental hypertension. Hypertension 4(Suppl III):III-27–III-33

    CAS  Google Scholar 

  • McMaster D, McCrum E, Patterson CC, Kerr MM, O’Reilly D, Evans AE (1992) Serum copper and zinc in random samples of the population of Northern Ireland. Am J Clin Nutr 56:440–446

    CAS  Google Scholar 

  • McNair P, Christensen MS, Christiansen C, Madsbad S, Transbol I (1982) Renal hypomagnesaemia in human diabetes mellitus: its relation to glucose homeostasis. Eur J Clin Invest 12:81–85

    Article  CAS  Google Scholar 

  • Meerarani P, Ramadass P, Toborek M, Bauer HC, Bauer H, Hennig B (2000) Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor α. Am J Clin Nutr 71:81–87

    CAS  Google Scholar 

  • Metwalli O, Al-okbi S, Motawi T, El-ahmady O, Abdul-Hafeez S, El-said E (1998) Study of serum metals and lipid profile in patients with acute myocardial infarction. J Islam Acad Sci 11(1):5–12

    Google Scholar 

  • Milne DB, Johnson PE (1993) Assessment of copper status: effect of age and gender on reference ranges in healthy adults. Clin Chem 39:883–887

    CAS  Google Scholar 

  • Mocchegianai E, Boemi M, Fumelli P, Fabris N (1989) Zinc-dependent low thymic hormone level in type 1 diabetes. Diabetes 38:932–937

    Article  Google Scholar 

  • Nadler JL, Malayan S, Loung H, Shaw S, Natarajan RD, Rude RK (1992) Intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus. Diabetes Care 15(7):835–841

    Article  CAS  Google Scholar 

  • Neve J (1991) Methods in determination of selenium states. J Trace Elem Electr Health Dis 5:1–17

    CAS  Google Scholar 

  • Neve J (1996) Selenium as a risk factor for cardiovascular diseases. J Cardiovasc Risk 3:42–47

    Article  CAS  Google Scholar 

  • Noto R, Alicata R, Sfoglian L, Neri S, Bifarella M (1983) A study of cupermia in a group of elderly diabetics. Acta Diabetol Lat 20:81–85

    Article  CAS  Google Scholar 

  • Pham PC, Pham PM, Pham PA, Pham SV, Pham HV, Miller JM, Yanagawa N, Pham PT (2005) Lower serum magnesium levels are associated with more rapid decline of renal function in patients with diabetes mellitus type 2. Clin Nephrol 63:429–436

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    Article  CAS  Google Scholar 

  • Resnick LM, Altura BT, Gupta RK (1993) Intracellular and extra cellular magnesium depletion in type II (non insulin-dependent) diabetes mellitus. Diabetologia 36:767–770

    Article  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as component of glutathione peroxidase. Science 179:538–544

    Article  Google Scholar 

  • Rude RK (1998) Magnesium deficiency: a cause of heterogeneous disease in humans. J Bone Miner Res 13:749–758

    Article  CAS  Google Scholar 

  • Saari JT (2000) Copper deficiency and cardiovascular disease: role of per oxidation, glycation, and nitration. Can J Physiol Pharmacol 78(10):848–855

    Article  CAS  Google Scholar 

  • Salonen JT, Salonen R, Korpela H, Suntioinen S, Tuomilehto J (1991) Serum copper and the risk of acute myocardial infarction: a prospective population study in men in eastern Finland. Am J Epidemiol 134:268–276

    CAS  Google Scholar 

  • Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical, and analytical aspects. Clin Chim Acta 294:1–26

    Article  CAS  Google Scholar 

  • Schnack CH, Bauer I, Pregnant P (1992) Hypomagnesaemia in type II (non-insulin dependent) diabetes mellitus is not corrected by improvement of long-term metabolic control. Diabetologia 35:77–79

    Article  CAS  Google Scholar 

  • Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY (2006) Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor. Atherosclerosis 187(2):238–250

    Article  CAS  Google Scholar 

  • Singh MM, Singh R, Khare A, Gupta MC, Patney NL, Jain VK, Goyal SP, Prakash V, Pandey DN (1985) Serum copper in myocardial infarction-diagnostic and prognostic significance. Angiology 36:504–510

    Article  CAS  Google Scholar 

  • Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 17(6):564–570

    Article  CAS  Google Scholar 

  • Stühlinger HG (2002) Focus on magnesium: magnesium deficiency and cardiovascular disease. Magnesium in cardiovascular disease. J Clin Basic Cardiol 5:55

    Google Scholar 

  • Suter PM (1999) The effects of potassium, magnesium, calcium and fiber on risk of stroke. Nutr Rev 57(30):84–88

    CAS  Google Scholar 

  • Swanson CA, Longnecker MP, Veillon C, Howe M, Levander OA, Taylor PR (1990) Selenium intake, age, gender, and smoking in relation to indices of selenium status of adults residing in a seleniferous area. Am J Clin Nutr 52:858–862

    CAS  Google Scholar 

  • Tawfeeq FR, Abbas MR, Abdul Kareem Y (2008) Serum copper, zinc and Cu/Zn ratio in diabetics. Iraqi J Commun Med 21(1):64–68

    Google Scholar 

  • Tiber AM, Sakhaii M, Joffe CD, Ratnaparkhi MV (1986) Relative values of plasma copper, zinc, lipids and lipoproteins as markers for coronary artery disease. Atherosclerosis 62:105–110

    Article  CAS  Google Scholar 

  • Uza G, Pavel O, Kovacis A (1984) Serum concentration of Na, K, Ca, Mg, P, Zn and 2u in patients with essential arterial hypertension. Clin Exp Hypertens A 6(8):1415–1429

    Article  CAS  Google Scholar 

  • Vilanova A, Gutiérrez C, Serrat N, Raga X, Paternain JL (1997) Metallothionein, zinc and copper levels: relationship with acute myocardial infarction. Clin Biochem 30(3):235–238

    Article  CAS  Google Scholar 

  • Walter RM, Uriu-Hare JY, Olin KL (1991) Copper, zinc, magnesium status and complications of diabetes mellitus. Diabetes Care 14:1050–1056

    Article  Google Scholar 

  • Wang WC, Makela AL, Nanto V, Makela P (1995) Serum selenium levels in diabetic children. A follow-up study during selenium-enriched agricultural fertilization in Finland. Biol Trace Elem Res 47:355–364

    Article  CAS  Google Scholar 

  • Zargar AH, Shah NA, Massodi SR (1998) Copper, zinc and magnesium levels in non insulin dependent diabetes mellitus. Postgard Med J 74:665–668

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rizvi, N.B., Nagra, S.A. (2014). Literature Review: Cardiovascular Disorders and Minerals. In: Minerals and Lipids Profiles in Cardiovascular Disorders in South Asia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34249-3_3

Download citation

Publish with us

Policies and ethics