Skip to main content

Helium Ion Microscopy

  • Chapter

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 51))

Abstract

The realization of a practical helium gas field ionization source (GFIS) enabled helium ion microscopy (HIM) as a new technique to image and modify materials and microstructures. After a brief overview of most common ultra-microscopy techniques (TEM, SEM, Gallium FIB) and HIM, we introduce the interaction fundamentals of helium ions with matter. A key element of that interaction is that the resulting signals for imaging, nanofabrication and analysis, i.e. the secondary electrons and backscattered ions, are to a very high degree localized around the incidence point of the helium beam. This simple fact allows the helium ion microscope to enable a new and unique view of surfaces and provide a new method for material modification. We highlight several applications for imaging and nanofabrication using the sub-nanometer sized helium probe of the HIM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We attribute the large variation in measured SE yields for a major part to differences in the surface cleanliness, sputtering and roughening in these experiments.

References

  1. A.H. Zewail, Micrographia of the twenty-first century: from camera obscura to 4D microscopy. Philos. Trans. R. Soc. A 368, 1191–1204 (2010)

    Article  ADS  Google Scholar 

  2. P.W. Hawkes, Aberration correction past and present. Philos. Trans. R. Soc. A 367, 3637–3664 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. L.W. Swanson, G.A. Schwind, Review of the ZrO/W Schottky cathode, in Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC Press, Boca Raton, 2008). ISBN 9781420045543

    Google Scholar 

  4. F.P. Widdershoven et al., CMOS biosensor platform, in Proc. of 2010 IEEE International Electron Device Meeting (IEDM), pp. 816–819

    Google Scholar 

  5. P.F.A. Alkemade, E.M. Koster, E. van Veldhoven, D.J. Maas, Imaging and nanofabrication with the helium ion microscope of the Van Leeuwenhoek Laboratory in Delft. Scanning 34, 90–100 (2012)

    Article  Google Scholar 

  6. L. de Broglie, Recherches sur la théorie des quanta, Thèse de doctorat soutenue à Paris le 25 novembre 1924, Annales de Physique (10e série) III (1925), 22. Reproduced in: L. de Broglie, Recherches sur la théorie des quanta (Fondation Louis de Broglie, Paris, 1992)

    Google Scholar 

  7. C. Davisson, L.H. Germer, Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705–740 (1927)

    Article  ADS  Google Scholar 

  8. H. Busch, Über die Wirkungsweise der Konzentrierungsspule bei der Braunschen Röhre (On the mode of action of the concentrating coil in the Braun tube). Arch. Elektrotechnik 18, 583–594 (1927)

    Article  Google Scholar 

  9. M. Knoll, E. Ruska, Das elektronenmikroskop. Z. Phys. 78, 318–339 (1931)

    ADS  Google Scholar 

  10. R.L. Stewart, Insulating films formed under electron and ion bombardment. Phys. Rev. 45, 488–490 (1934)

    Article  ADS  Google Scholar 

  11. R.P. Feynman, There’s plenty of room at the bottom (data storage). Caltech Eng. Sci. 23, 22–36 (1960), lecture in 1959, reprinted in J. Microelectromech. S. 1, 60–66 (1992). See also: http://www.zyvex.com/nanotech/feynman.html

    Google Scholar 

  12. H.C. Pfeiffer, New prospects for electron beams as tools for semiconductor lithography. Proc. SPIE 7378, 737802 (2009)

    Article  Google Scholar 

  13. R.F.M. Thornley, M. Hatzakis, Electron optical fabrication of solid-state devices, in Record of 9th Symp. Electron, Ion, and Laser Beam Technol, vol. 94, ed. by L. Martin (1967). San Francisco Press

    Google Scholar 

  14. J.P. Ballantyne, Mask fabrication by electron-beam lithography, in Electron-Beam Technology in Microelectronic Fabrication. ed. by G.R. Brewer (Academic Press, San Diego, 1980), pp. 259–307

    Google Scholar 

  15. M. Knoll, Aufladepotentiel und Sekundäremission Elektronenbestrahlter Körper. Z. Tech. Phys. 16, 467–475 (1935)

    Google Scholar 

  16. D. McMullan, An improved scanning electron microscope for opaque specimens. Proc. Inst. Electr. Eng. 100 Part II, 245–259 (1953)

    Google Scholar 

  17. M. von Ardenne, Das Elektronen-Rastermikroskop, Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938)

    Google Scholar 

  18. V.A. Zworykin, J. Hillier, R.L. Snyder, A scanning electron microscope. ASTM Bull. 117, 15–23 (1942)

    Google Scholar 

  19. A.E. Vladár, M.T. Postek, B. Ming, On the sub-nanometer resolution of scanning electron and helium ion microscopes. Micros. Today 3, 6–13 (2009)

    Google Scholar 

  20. E.W. Müller, Das Feldionenmikroskop. Z. Phys. 131, 136–142 (1951)

    Article  ADS  Google Scholar 

  21. T.T. Tsong, E.W. Müller, The field ion microscopical image of an ordered platinum-cobalt alloy. Appl. Phys. Lett. 9, 7–10 (1966)

    Article  ADS  Google Scholar 

  22. E.W. Müller, J.A. Panitz, S.B. McLane, The atom-probe field ion microscope. Rev. Sci. Instrum. 39, 83–86 (1968)

    Article  ADS  Google Scholar 

  23. W. Telieps, E. Bauer, An analytical reflection and emission UHV surface electron microscope. Ultramicroscopy 17, 57–66 (1985)

    Article  Google Scholar 

  24. E. Bauer, Low energy electron reflection microscopy, in Fifth Intern. Congress for Electron Microscopy, vol. 1, ed. by S.S. Breese Jr. (Academic Press, New York, 1962), p. D-11

    Google Scholar 

  25. G. Binnig, H. Rohrer, Scanning tunneling microscopy—from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987)

    Article  ADS  Google Scholar 

  26. J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985)

    Article  ADS  Google Scholar 

  27. B.C. Stipe, M. Rezaei, W. Ho, Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    Article  ADS  Google Scholar 

  28. M.J. Rost, L. Crama, P. Schakel, E. van Tol, G.B.E.M. Van Velzen-Williams, C.F. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A.J. Katan, K. Schoots, R. Schumm, W. van Loo, T.H. Oosterkamp, J.W.M. Frenken, Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 76, 053710 (2005)

    Article  ADS  Google Scholar 

  29. R. Levi-Setti, G. Crow, Y.L. Wang, High spatial resolution SIMS with the UC-HRL scanning ion microprobe. J. Phys. C 9, 197–205 (1984)

    Google Scholar 

  30. J.B. Jergenson, Liquid metal ion source, U.S. Patent #4318029, 1982

    Google Scholar 

  31. L.A. Giannuzzi, F.A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, Berlin, 2004). ISBN 978-0-387-23116-7

    Google Scholar 

  32. R.J. Ross, C. Boit, D. Staab (eds.), Microelectonics Failure Analysis Desk Reference (2011). ISBN 9781615037254, ASMI

    Google Scholar 

  33. E.W. Ward, J. Notte, N.P. Economou, Helium ion microscope: a new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B 24, 2871–2874 (2006)

    Article  Google Scholar 

  34. E.W. Ward, Atomic level ion source and method of manufacture and operation, U.S. Patent #7368727, 2004

    Google Scholar 

  35. B. Ziaja, R.A. London, J. Hajdu, Ionization by impact electrons in solids: electron mean free path fitted over a wide energy range. J. Appl. Phys. 99, 033514 (2006)

    Article  ADS  Google Scholar 

  36. H. Salow, Sekundarelektronen-emission. Phys. Z. 41, 434–436 (1940)

    Google Scholar 

  37. M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  38. N. Bohr, LX. On the decrease of velocity of swiftly moving electrified particles in passing through matter. Philos. Mag. 30, 581–612 (1915)

    Article  Google Scholar 

  39. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985). ISBN 0080220533

    Google Scholar 

  40. http://www.srim.org/

  41. Y. Wang, M. Nastasi (eds.), Handbook of Modern Ion Beam Materials Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  42. A. Nomura, S. Kiyono, Stopping powers of copper, silver and gold for protons and helium ions of low energy. J. Phys. D, Appl. Phys. 8, 1551–1559 (1975)

    Article  ADS  Google Scholar 

  43. D. Cohen-Tanugi, N. Yao, Superior imaging resolution in scanning helium-ion microscopy: a look at beam-sample interactions. J. Appl. Phys. 104, 063504 (2008)

    Article  ADS  Google Scholar 

  44. P. Varga, H. Winter, in Particle Induced Electron Emission II (Springer, Berlin, 1992), p. 149

    Chapter  Google Scholar 

  45. J.C. Tucek, S.G. Walton, R.L. Champion, Secondary-electron and negative-ion emission from Al: effect of oxygen coverage. Phys. Rev. B 53, 14127–14134 (1996)

    Article  ADS  Google Scholar 

  46. K. Ohya, K. Inai, A. Nisawa, A. Itoh, Emission statistics of X-ray induced photoelectrons and its comparison with electron- and ion-induced electron emissions. Nucl. Instrum. Methods B 266, 541–548 (2008)

    Article  ADS  Google Scholar 

  47. Y.V. Petrov, O.F. Vyvenko, A.S. Bondarenko, Scanning helium ion microscope: distribution of secondary electrons and ion channeling. Surf. Investig.: X-Ray Synchrotron Neutron Tech. 4, 792–795 (2010)

    Article  Google Scholar 

  48. R. Ramachandra, B. Griffin, D. Joy, A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109, 748–757 (2009)

    Article  Google Scholar 

  49. T.E. Everhart, R.F.M. Thornley, Wide-band detector for micro-microampere low-energy electron currents. J. Sci. Instrum. 37, 246–247 (1960)

    Article  ADS  Google Scholar 

  50. V. Castaldo, J. Withagen, C. Hagen, P. Kruit, E. van Veldhoven, Angular dependence of the ion-induced secondary electron emission for He+ and Ga+ beams. Micros. Microanal. 17, 624–636 (2011)

    Article  ADS  Google Scholar 

  51. J.L. Wiza, Microchannel plate detectors. Nucl. Instrum. Methods 162, 587–601 (1979)

    Article  ADS  Google Scholar 

  52. S. Kostinski, N. Yao, Rutherford backscattering oscillation in scanning helium-ion microscopy. J. Appl. Phys. 109, 064311 (2011)

    Article  ADS  Google Scholar 

  53. V. Castaldo, C.W. Hagen, P. Kruit, E. van Veldhoven, D.J. Maas, On the influence of the sputtering in determining the resolution of a scanning ion microscope. J. Vac. Sci. Technol. B 27(6), 3196–3202 (2009)

    Article  Google Scholar 

  54. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, 2nd edn. Springer Series in Optical Sciences, vol. 45 (Springer, Berlin, 1998)

    Google Scholar 

  55. M. Hellsing, L. Karlsson, H.-O. Andrè, H. Nordèn, Performance of a microchannel plate ion detector in the energy range 3–25 keV. J. Phys. E, Sci. Instrum. 18, 920–925 (1985)

    Article  ADS  Google Scholar 

  56. S. Sijbrandij, J. Notte, L. Scipioni, C. Huynh, C. Sanford, Analysis and metrology with a focused helium ion beam. J. Vac. Sci. Technol. B 28, 73–77 (2010)

    Article  Google Scholar 

  57. J.W. Rabalais, Principles and Applications of Ion Scattering Spectroscopy (Wiley-Interscience, New York, 2003)

    Google Scholar 

  58. T. Wirtz, N. Vanhove, L. Pillatsch, D. Dowsett, S. Sijbrandij, J. Notte, Towards secondary ion mass spectrometry on the helium ion microscope: an experimental and simulation based feasibility study with He+ and Ne+ bombardment. Appl. Phys. Lett. 101, 041601 (2012). doi:10.1063/1.4739240

    Article  ADS  Google Scholar 

  59. S. Ogawa, T. Iijima, S. Awata, S. Kakinuma, S. Komatani, T. Kanayama, Helium ion microscope characterization for Cu/low-k interconnects—SE imaging and focused helium ion beam luminescence detection, in Proceedings of the Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM) (IEEE International, New York, 2011), pp. 1–3

    Google Scholar 

  60. J.H. Franken, M. Hoeijmakers, R. Lavrijsen, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, E. van Veldhoven, D.J. Maas, Precise control of domain wall injection and pinning using helium and gallium focused ion beams. J. Appl. Phys. 109, 07D504 (2011)

    Article  Google Scholar 

  61. R. Livengood, S. Tan, Y. Greenzweig, J. Notte, S. McVey, Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. J. Vac. Sci. Technol. B 27, 3244–3249 (2009)

    Article  Google Scholar 

  62. J.A. van Kan, A.A. Bettiol, Proton beam writing: a new 3D nanolithographic technique, in Ion Beams in Nanoscience and Technology, Particle Acceleration and Detection, ed. by R. Hellborg et al., pp. 297–310

    Google Scholar 

  63. D.C. Bell, M.C. Lemme, L.A. Stern, C.M. Marcus, Precision material modification and patterning with he ions. J. Vac. Sci. Technol. B 27, 2755–2758 (2009)

    Article  Google Scholar 

  64. D. Pickard, L. Scipioni, Graphene Nano-ribbon Patterning in the Orion Plus. Zeiss Application Note, October 2009

    Google Scholar 

  65. D.J. Maas et al., Nanofabrication with a helium ion microscope. Proc. SPIE 7638, 763814 (2010)

    Article  Google Scholar 

  66. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink, D. Maas, Sub-10-nm nanolithography with a scanning helium beam. J. Vac. Sci. Technol. B 27, L18–L21 (2009)

    Article  Google Scholar 

  67. D. Winston, J. Ferrera, L. Battistella, A.E. Vladár, K.K. Berggren, Modeling the point-spread function in helium-ion lithography. Scanning 34, 121–128 (2012)

    Article  Google Scholar 

  68. C.A. Sanford, L. Stern, L. Barriss, L. Farkas, M. DiManna, R. Mello, D.J. Maas, P.F.A. Alkemade, Beam induced deposition of platinum using a helium ion microscope. J. Vac. Sci. Technol. B 27, 2660–2667 (2009)

    Article  Google Scholar 

  69. P. Chen, E. van Veldhoven, C.A. Sanford, H.W.M. Salemink, D.J. Maas, D.A. Smith, P.D. Rack, P.F.A. Alkemade, Nanopillar growth by focused helium ion-beam-induced deposition. Nanotechnology 21, 455302 (2010)

    Article  ADS  Google Scholar 

  70. A. Szczepkowicz, The kinetics of hill-and-valley faceting of oxygen-covered tungsten. Surf. Sci. 606, 202–208 (2012)

    Article  ADS  Google Scholar 

  71. A. Szczepkowicz, Oxygen-covered tungsten crystal shape: time effects, equilibrium, surface energy and the edge-rounding. Surf. Sci. 605, 1719–1725 (2011)

    Article  ADS  Google Scholar 

  72. T.T. Tsong, Direct observation of interactions between individual atoms on tungsten surfaces. Phys. Rev. B 6, 417–426 (1972)

    Article  ADS  Google Scholar 

  73. J.L. Pitters, R. Urban, R.A. Wolkow, Creation and recovery of a W(111) single atom gas field ion source. J. Chem. Phys. 136, 154704 (2012)

    Article  ADS  Google Scholar 

  74. R. Hill, F.H.M. Faridur Rahman, Advances in helium ion microscopy. Nucl. Instrum. Methods A 645, 96–101 (2011)

    Article  ADS  Google Scholar 

  75. M.T. Postek, A. Vladár, C. Archie, B. Ming, Review of current progress in nanometrology with the helium ion microscope. Meas. Sci. Technol. 22, 024004 (2011)

    Article  ADS  Google Scholar 

  76. S. Sijbrandij, J. Notte, C. Sanford, R. Hill, Analysis of subsurface beam spread and its impact on the image resolution of the helium ion microscope. J. Vac. Sci. Technol. B 28, C6F6–C6F9 (2010)

    Article  Google Scholar 

  77. D.J. Maas, E. van der Drift, E. van Veldhoven, J. Meessen, M. Rudneva, P.F.A. Alkemade, Nano-engineering with a focused helium ion beam. MRS Proc. 1354 (2011) mrss11-1354-ii03-03

    Google Scholar 

  78. J.E. Barth, P. Kruit, Addition of different contributions to the charged particle probe size. Optik 101, 101 (1996)

    Google Scholar 

  79. Zeiss Orion® Plus—product brochure, August 2011, by Carl Zeiss SMT, Oberkochen

    Google Scholar 

  80. W.A. Schroeder, J.R. Shelton, J.B. Shelton, B. Roberson, G. Apell, The amino acid sequence of bovine liver catalase: a preliminary report. Arch. Biochem. Biophys. 131, 653–655 (1969)

    Article  Google Scholar 

  81. R. Luftig, An accurate measurement of the catalase crystal period and its use as an internal marker for electron microscopy. J. Ultra. Mol. Struct. R. 20, 91–102 (1967)

    Article  Google Scholar 

  82. R. van Gastel, L. Barriss, C. Sanford, G. Hlawacek, L. Scipioni, A.P. Merkle, D. Voci, C. Fenner, H.J.W. Zandvliet, B. Poelsema, Design and performance of a near ultra high vacuum helium ion microscope. Micros. Microanal. 17(S2), 928–929 (2011)

    Article  Google Scholar 

  83. S.A. Boden, A. Asadollahbaik, H.N. Rutt, D.M. Bagnall, Helium ion microscopy of lepidoptera scales. Scanning 34, 107–120 (2012)

    Article  Google Scholar 

  84. http://www.itrs.net/

  85. B. Bunday et al., Unified advanced optical critical dimension (OCD) scatterometry specification for sub-65 nm technology (2009 version), ISMI Tech. Transfer, 2009, docID#: 04114596F-ENG

    Google Scholar 

  86. B. Bunday et al., Unified advanced optical critical dimension scanning electron microscopes (CD-SEM) specification for sub-65 nm technology (2010 version), ISMI Tech. Transfer, 2010, docID#: 04114595G-ENG

    Google Scholar 

  87. D.J. Maas, E. van Veldhoven, J. Meessen, EUV resist metrology, some benefits and limitations, in SPIE2011-7971 (no proceedings published)

    Google Scholar 

  88. K. Ohya, T. Ishitani, MonteCarlo simulations of topographic contrast in scanning ion microscope. J. Electron Microsc. 53, 229–235 (2004)

    Article  Google Scholar 

  89. T. Yamanaka, K. Inai, K. Ohya, T. Ishitani, Simulation of secondary electron emission in helium ion microscope for overcut and undercut line-edge patterns. Proc. SPIE 7272, 72722L (2009)

    Article  ADS  Google Scholar 

  90. A. George, M. Knez, G. Hlawacek, D. Hagedoorn, H.H.J. Verputten, R. van Gastel, J.E. ten Elshof, Patterning of organosilane molecular thin films from gas phase and its applications: fabrication of multifunctional surfaces and large area molecular templates for site selective material deposition. Langmuir 28, 3045–3052 (2012)

    Article  Google Scholar 

  91. J. Singh, J.E. Whitten, Adsorption of 3-mercaptopropyltrimethoxysilane on silicon oxide surfaces and adsorbate interaction with thermally deposited gold. J. Phys. Chem. C 112, 19088–19096 (2008)

    Google Scholar 

  92. K.-Y. Wu, S.-Y. Yu, Y.-T. Tao, Continuous modulation of electrode work function with mixed self-assembled monolayers and its effect in charge injection. Langmuir 25, 6232–6238 (2009)

    Article  Google Scholar 

  93. G. Hlawacek, V. Veligura, S. Lorbek, T.F. Mocking, A. George, R. van Gastel, H.J.W. Zandvliet, B. Poelsema, Imaging ultrathin layers with helium ion microscopy—utilizing the channeling contrast mechanism. Beilstein J. Nanotechnol. 3, 507–512 (2012). doi:10.3762/bjnano.3.58

    Article  Google Scholar 

  94. W. Eckstein, in Behrisch: Sputtering by Particle Bombardment (Springer, Berlin, 2007)

    Google Scholar 

  95. M. Rudneva, E. van Veldhoven, S. Malladi, D.J. Maas, H.W. Zandbergen, HIM as a sculpting tool for nanosamples, in MRS Symposium Proc. (2012)

    Google Scholar 

  96. D.L. da Silva, M.J. Mörschbächer, P.F.P. Fichtner, E. Oliviero, M. Behar, Formation of bubbles and extended defects in He implanted (1 0 0) Si at elevated temperatures. Nucl. Instrum. Methods B 219–220, 713–717 (2004)

    Article  Google Scholar 

  97. P. Jung, Diffusion of implanted helium in si and SiO2. Nucl. Instrum. Methods 91, 362–365 (1994)

    Article  Google Scholar 

  98. Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N.P. Ong, R.J. Cava, Superconductivity in Cu x Bi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010)

    Article  ADS  Google Scholar 

  99. J. Yang, D.C. Ferranti, L.A. Stern, C.A. Sanford, J. Huang, Z. Ren, L.-C. Qin, A.R. Hall, Rapid and precise scanning helium microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22, 285310 (2011)

    Article  Google Scholar 

  100. L. Scipioni, D.C. Ferranti, V.S. Smentkowski, R.A. Potyrailo, Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope. J. Vac. Sci. Technol. B 28, C6P18–C6P23 (2010)

    Article  Google Scholar 

  101. F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama, H. Obaa, A. Yasaka, T. Amano, H. Shigemura, O. Suga, Development of new FIB technology for EUVL mask repair. Proc. SPIE 7969, 79691C (2011)

    Article  ADS  Google Scholar 

  102. S. Tan, R. Livengood, D. Shima, J. Notte, S. McVey, Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications. J. Vac. Sci. Technol. B 28, C6F15–C6F21 (2010)

    Article  Google Scholar 

  103. EDFAS Desk Reference Committee (ed.), Microelectronics Failure Analysis Desk Reference, 6th edn. (ASM International, Materials Park, 2011). ISBN: 978-1-61503-725-4

    Google Scholar 

  104. S.A. Boden, Z. Moktadir, D.M. Bagnall, H. Mizuta, H.N. Rutt, Focused helium ion beam milling and deposition. Microelectron. Eng. 88, 2452–2455 (2011)

    Article  Google Scholar 

  105. P.F.A. Alkemade, P. Chen, E. van Veldhoven, D. Maas, Model for nanopillar growth by focused helium ion-beam-induced deposition. J. Vac. Sci. Technol. B 28, C6F22–C6F25 (2010)

    Article  Google Scholar 

  106. D.A. Smith, D.C. Joy, P.D. Rack, Monte Carlo simulation of focused helium ion beam induced deposition. Nanotechnology 21, 175302 (2010)

    Article  ADS  Google Scholar 

  107. L. Scipioni, C. Sanford, E. van Veldhoven, D. Maas, A design-of-experiments approach to characterizing beam-induced deposition in the helium ion microscope. Micros. Today 5, 22–26 (2011)

    Article  Google Scholar 

  108. Y. Drezner, Y. Greenzweig, D. Fishman, E. van Veldhoven, D.J. Maas, A. Raveh, R.H. Livengood, Structural characterization of He ion microscope platinum deposition and sub-surface silicon damage. J. Vac. Sci. Technol. B 30, 041210 (2012). http://dx.doi.org/10.1116/1.4732074

    Article  Google Scholar 

  109. D. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1991)

    MATH  Google Scholar 

  110. I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26, 1197–1276 (2008)

    Article  Google Scholar 

  111. E. van der Drift, D.J. Maas, Helium ion lithography, in Nanofabrication, Techniques and Principles, ed. by M. Stepanova, S. Dew (Springer, Berlin, 2012). ISBN 978-3-7091-0423-1

    Google Scholar 

  112. P.F.A. Alkemade, E. van Veldhoven, Deposition, milling, and etching with a focused helium ion beam, in Nanofabrication, Techniques and Principles, ed. by M. Stepanova, S. Dew (Springer, Berlin, 2012). ISBN 978-3-7091-0423-1

    Google Scholar 

  113. S. Tan, R. Livengood, D. Shima, J. Notte, S. McVey, Nanomachining with a focused neon beam: a preliminary investigation for semiconductor circuit editing and failure analysis. J. Vac. Sci. Technol. B 29, 06F604 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The significant investment by the Dutch NanoNed program and the Dutch Foundation for Technical Sciences (STW) is to be acknowledged for the HIM facilities at TNO and the University of Twente, respectively. ASML has financially supported the CD metrology benchmark of SEM with HIM. The HREM application is supported by NIMIC. Carl Zeiss NTS has financially and scientifically (Larry Scipioni, Bill Thompson, Colin Sanford, Louise Barriss, Lewis Stern and David Ferranti) supported the UHV instrument development program and the He-IBID experiments. Diederik Maas is grateful to Susan Ketelaars for her patience and wisdom, and acknowledges Emile van Veldhoven, Hans van der Veer, David Nijkerk, Pieter van Beek, Larry Scipioni, John Notte IV, Bill Thompson, Lewis Stern, Sybren Sijbrandij, Emile van der Drift, Vadim Sidorkin, Ping Chen, Anja van Langen-Suurling, Hozan Miro, Emma Koster, Maria Rudneva, Henny Zandbergen and, last but certainly not least, Paul Alkemade for their pleasant and close collaboration in exploring HIM applications and instrumentation. Raoul van Gastel acknowledges Gregor Hlawacek, Vasilisa Veligura, Al Lysse, Clarke Fenner, and in particular Bene Poelsema for his scientific guidance and never-ending enthusiasm in sharing his long-standing experience in ion scattering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik J. Maas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maas, D.J., van Gastel, R. (2013). Helium Ion Microscopy. In: Bracco, G., Holst, B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_16

Download citation

Publish with us

Policies and ethics