Skip to main content

Refined Homotopic Thinning Algorithms and Quality Measures for Skeletonisation Methods

  • Chapter
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Topological skeletons are shape descriptors that have been applied successfully in practical applications. However, many skeletonisation methods lack accessibility, mainly due to the need for manual parameter adjustment and the shortage of tools for comparative analysis.In this paper we address these problems. We propose two new homotopy-preserving thinning algorithms: Flux-ordered adaptive thinning (FOAT) extends existing flux-based thinning methods by a robust automatic parameter adjustment, maximal disc thinning (MDT) combines maximal disc detection on Euclidean distance maps with homotopic thinning. Moreover, we propose distinct quality measures that allow to analyse the properties of skeletonisation algorithms. Tests of the new algorithms and quality assessment tools are conducted on the widely used shape database CE-Shape-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  2. Bloomberg, D.S.: Connectivity-preserving morphological image transformations. In: Proceedings of the SPIE Visual Communications and Image Processing ’91: Image Processing Conference, Boston, MA, pp. 302–334 (1991)

    Google Scholar 

  3. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT, Cambridge, MA (1967)

    Google Scholar 

  4. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Graph. Image Process. 27(3), 321–345 (1984)

    Article  Google Scholar 

  5. Danielsson, P.E.: Euclidean distance mapping. Comput. Vis. Graph. Image Process. 14, 227–248 (1980)

    Article  Google Scholar 

  6. Demirci, F., Shoukoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recogniton as many-to-many feature matching. Int. J. Comput. Vis. 69(2), 203–222 (2006)

    Article  Google Scholar 

  7. Di Ruberto, C.: Recognition of shapes by attributed skeletal graphs. Pattern Recognit. 37(1), 21–31 (2004)

    Article  Google Scholar 

  8. Dimitrov, P., Damon, J., Siddiqi, K.: Flux invariants for shape. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI, pp. 835–841 (2003)

    Google Scholar 

  9. Geiger, D., Liu, T., Kohn, R.V.: Representation and self-similarity of shapes. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 86–99 (2003)

    Article  Google Scholar 

  10. Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance maps and level sets. Comput. Vis. Image Underst. 62, 382–391 (1995)

    Article  Google Scholar 

  11. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)

    Article  Google Scholar 

  12. Lantuejoul, C.: Skeletonization in quantitative metallography. In: Haralick, R.M., Simon, J.C. (eds.) Issues in Digital Image Processing, pp. 107–135. Sijthoff and Noordoff, Amsterdam (1980)

    Chapter  Google Scholar 

  13. Latecki, L., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, pp. 424–429 (1967)

    Google Scholar 

  14. Liu, T., Geiger, D.: Approximate tree matching and shape similarity. In: Proceedings of the 7th IEEE Conference on Computer Vision, Kerkyra, Greece, pp. 456–462 (1999)

    Google Scholar 

  15. Malandain, G., Fernández-Vidal, S.: Euclidean skeletons. Image Vis. Comput. 16(5), 317–327 (1998)

    Article  Google Scholar 

  16. Maragos, P., Schafer, R.W.: Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1228–1244 (1986)

    Article  Google Scholar 

  17. Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and Its Applications to Image and Signal Processing. Volume 18 of Computational Imaging and Vision, pp. 362–380. Springer, Dordrecht (2002)

    Google Scholar 

  18. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognit. 28, 343–359 (1995)

    Article  Google Scholar 

  19. Palagyi, K., Nemeth, G.: Fully parallel 3D thinning algorithms based on sufficient conditions for topology preservation. In: Proceedings of the International Conference on Discrete Geometry for Computer Imagery. Volume 5810 of Lecture Notes in Computer Science, pp. 481–492. Springer, Berlin (2009)

    Google Scholar 

  20. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72, 404–413 (1998)

    Article  Google Scholar 

  21. Rémy, E., Thiel, E.: Exact medial axis with euclidean distance. Image Vis. Comput. 23, 167–175 (2005)

    Article  Google Scholar 

  22. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 550–571 (2004)

    Article  Google Scholar 

  23. Serra, J. (ed.): Image Analysis and Mathematical Morphology, vol. 1. Academic, London (1982)

    Google Scholar 

  24. Serra, J. (ed.): Image Analysis and Mathematical Morphology, vol. 2. Academic, London (1988)

    Google Scholar 

  25. Shaked, D., Bruckstein, A.: Pruning medial axes. Comput. Vis. Image Underst. 69(2), 156–169 (1998)

    Article  Google Scholar 

  26. Shasha, D., Wang, J.: Graphdiff: approximate graph matcher and clusterer. http://cs.nyu.edu/shasha/papers/agm.html (2000). Accessed 29 December 2011

  27. Siddiqi, K., Pizer, S.M. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Volume 37 of Computational Imaging. Springer, Dordrecht (2008)

    Google Scholar 

  28. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vis. 35, 13–32 (1999)

    Article  Google Scholar 

  29. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48, 215–231 (2002)

    Article  MATH  Google Scholar 

  30. Siddiqi, K., Zhang, J., Macrini, D., Dickinson, S., Shokoufandeh, A.: 3D model retrieval using medial surfaces. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations: Mathematics, Algorithms and Applications. Volume 37 of Computational Imaging, pp. 309–325. Springer, Dordrecht (2008)

    Google Scholar 

  31. Sorantin, E., Halmai, C., Erdohelyi, B., Palagyi, K., Nyul, L., Olle, K., Geiger, B., Lindbichler, F., Friedrich, G., Kiesler, K.: Spiral-CT-based assessment of tracheal stenoses using 3-D-skeletonization. Med. Imaging 21, 263–273 (2002)

    Article  Google Scholar 

  32. Zhu, S.C., Yuille, A.L.: Forms: a flexible object recognition and modeling system. Int. J. Comput. Vis. 20(3), 187–212 (1996)

    Article  Google Scholar 

  33. Zhu, Y., Seneviratne, L.D., Earles, S.W.E.: A fast boundary based thinning algorithm. In: Proceedings of IAPR Workshop on Machine Vision Applications, Kawasaki, Japan, pp. 548–551 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peter, P., Breuß, M. (2013). Refined Homotopic Thinning Algorithms and Quality Measures for Skeletonisation Methods. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_4

Download citation

Publish with us

Policies and ethics