Skip to main content

Lumbosacral Instrumentation

  • Chapter
  • First Online:
Spine Surgery Basics
  • 5777 Accesses

Abstract

Spinal fixation devices are used in the lumbar and sacral spine primarily for stabilization, reduction of deformities and fractures, and replacement of vertebral elements affected by tumors or infections Slone (Radiographics 13:521–543, 1993). Spinal instrumentation of the lumbosacral spine is necessary for the treatment of many different conditions including herniated discs, spondylolisthesis, scoliosis, degenerative disc disease, spinal stenosis, tumors, and infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bono CM, Garfin SR (2004) Spine, Orthopaedic surgery essentials. Lippincott Williams & Wilkins, Philadelphia, p 343, xiii

    Google Scholar 

  2. Kebaish KM (2010) Sacropelvic fixation: techniques and complications. Spine 35(25):2245–2251

    Article  PubMed  Google Scholar 

  3. McAfee PC, Werner FW, Glisson RR (1985) A biomechanical analysis of spinal instrumentation systems in thoracolumbar fractures. Comparison of traditional Harrington distraction instrumentation with segmental spinal instrumentation. Spine 10(3):204–217

    Article  PubMed  CAS  Google Scholar 

  4. Davies AG, McMaster MJ (1992) The effect of Luque-rod instrumentation on the sagittal contour of the lumbosacral spine in adolescent idiopathic scoliosis and the preservation of a physiologic lumbar lordosis. Spine 17(1):112–115

    Article  PubMed  CAS  Google Scholar 

  5. Lenke LG et al (1993) Ability of Cotrel-Dubousset instrumentation to preserve distal lumbar motion segments in adolescent idiopathic scoliosis. J Spinal Disord 6(4):339–350

    Article  PubMed  CAS  Google Scholar 

  6. Slone RM (1993) Spinal fixation. Part 2. Fixation techniques and hardware for the thoracic and lumbosacral spine. Radiographics 13(3):521–543

    PubMed  CAS  Google Scholar 

  7. McCord DH et al (1992) Biomechanical analysis of lumbosacral fixation. Spine 17(8 Suppl):S235–S243

    Article  PubMed  CAS  Google Scholar 

  8. Stovall DO Jr et al (1997) Sacral fixation technique in lumbosacral fusion. Spine 22(1):32–37

    Article  PubMed  Google Scholar 

  9. Liljenqvist U et al (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67(2):157–163

    PubMed  CAS  Google Scholar 

  10. Slone RM, MacMillan M, Montgomery WJ (1993) Spinal fixation. Part 3. Complications of spinal instrumentation. Radiographics 13(4):797–816

    PubMed  CAS  Google Scholar 

  11. Liljenqvist U et al (2002) Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis. Eur Spine J 11(4):336–343

    Article  PubMed  CAS  Google Scholar 

  12. Skinner R et al (1990) Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine 15(3):195–201

    Article  PubMed  CAS  Google Scholar 

  13. Rose PS (2009) Pedicle screw instrumentation for adult idiopathic scoliosis: an improvement over hook/hybrid fixation. Spine 34(8):852–857; ­discussion 858

    Article  PubMed  Google Scholar 

  14. Deguchi M (1998) Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation. Spine 23(12):1307–1312; discussion 1313

    Article  PubMed  CAS  Google Scholar 

  15. Guyer DW, Wiltse LL, Peek RD (1988) The Wiltse pedicle screw fixation system. Orthopedics 11(10):1455–1460

    PubMed  CAS  Google Scholar 

  16. Leong JC et al (1998) Comparison of the strengths of lumbosacral fixation achieved with techniques using one and two triangulated sacral screws. Spine 23(21):2289–2294

    Article  PubMed  CAS  Google Scholar 

  17. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18(8):983–991

    Article  PubMed  CAS  Google Scholar 

  18. Heggeness MH, Esses SI (1991) Translaminar facet joint screw fixation for lumbar and lumbosacral fusion. A clinical and biomechanical study. Spine 16(6 Suppl):S266–S269

    Article  PubMed  CAS  Google Scholar 

  19. Margulies JY, Seimon LP (2000) Clinical efficacy of lumbar and lumbosacral fusion using the Boucher facet screw fixation technique. Bull Hosp Jt Dis 59(1):33–39

    PubMed  CAS  Google Scholar 

  20. Jacobs RR, Montesano PX, Jackson RP (1989) Enhancement of lumbar spine fusion by use of translaminar facet joint screws. Spine 14(1):12–15

    Article  PubMed  CAS  Google Scholar 

  21. Marchesi DG et al (1992) Translaminar facet joint screws to enhance segmental fusion of the lumbar spine. Eur Spine J 1(2):125–130

    Article  PubMed  CAS  Google Scholar 

  22. Vanden Berghe L (1993) Stability of the lumbar spine and method of instrumentation. Acta Orthop Belg 59(2):175–180

    Google Scholar 

  23. DeVine JG, Gloystein D, Singh N (2009) A novel alternative for removal of the AxiaLif (TranS1) in the setting of pseudarthrosis of L5–S1. Spine J 9(11):910–915

    Article  PubMed  Google Scholar 

  24. Aryan HE et al (2008) Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5–S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg 51(4):225–230

    Article  PubMed  CAS  Google Scholar 

  25. Erkan S et al (2009) Biomechanical evaluation of a new AxiaLIF technique for two-level lumbar fusion. Eur Spine J 18(6):807–814

    Article  PubMed  Google Scholar 

  26. Bono CM, Vaccaro AR (2007) Interspinous process devices in the lumbar spine. J Spinal Disord Tech 20(3):255–261

    Article  PubMed  Google Scholar 

  27. Anderson PA, Tribus CB, Kitchel SH (2006) Treatment of neurogenic claudication by interspinous decompression: application of the X STOP device in patients with lumbar degenerative spondylolisthesis. J Neurosurg Spine 4(6):463–471

    Article  PubMed  Google Scholar 

  28. Harrop JS et al (2009) Iliac bolt fixation: an anatomic approach. J Spinal Disord Tech 22(8):541–544

    Article  PubMed  Google Scholar 

  29. Kuklo TR et al (2001) Minimum 2-year analysis of sacropelvic fixation and L5–S1 fusion using S1 and iliac screws. Spine 26(18):1976–1983

    Article  PubMed  CAS  Google Scholar 

  30. Alegre GM et al (2001) S1 screw bending moment with posterior spinal instrumentation across the lumbosacral junction after unilateral iliac crest harvest. Spine 26(18):1950–1955

    Article  PubMed  CAS  Google Scholar 

  31. Gerber M et al (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Spine 31(7):762–768

    Article  PubMed  Google Scholar 

  32. McAfee PC (1999) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81(6):859–880

    PubMed  CAS  Google Scholar 

  33. Sasso RC, Kitchel SH, Dawson EG (2004) A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device. Spine 29(2):113–122; ­discussion 121–122

    Article  PubMed  Google Scholar 

  34. Delloye C et al (2002) Perforations of cortical bone allografts improve their incorporation. Clin Orthop Relat Res 396:240–247

    Article  PubMed  Google Scholar 

  35. Hutter CG (1985) Spinal stenosis and posterior lumbar interbody fusion. Clin Orthop Relat Res 193:103–114

    PubMed  Google Scholar 

  36. Zdeblick TA, Phillips FM (2003) Interbody cage devices. Spine 28(15 Suppl):S2–S7

    PubMed  Google Scholar 

  37. Lee SH et al (2006) Revision surgery of the lumbar spine: anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation. J Neurosurg Spine 5(3):228–233

    Article  PubMed  Google Scholar 

  38. Enker P, Steffee AD (1994) Interbody fusion and instrumentation. Clin Orthop Relat Res 300:90–101

    PubMed  Google Scholar 

  39. Humphreys SC et al (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 26(5):567–571

    Article  PubMed  CAS  Google Scholar 

  40. Hitchon PW et al (1999) Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Spine 24(3):213–218

    Article  PubMed  CAS  Google Scholar 

  41. Balsano M (2011) Nucleus disc arthroplasty with the NUBAC device: 2-year clinical experience. Eur Spine J 20(Suppl 1):S36–S40

    Article  PubMed  Google Scholar 

  42. McAfee PC (2004) The indications for lumbar and cervical disc replacement. Spine J 4(6 Suppl):177S–181S

    Article  PubMed  Google Scholar 

  43. Lehmann TR et al (1987) Long-term follow-up of lower lumbar fusion patients. Spine 12(2):97–104

    Article  PubMed  CAS  Google Scholar 

  44. Bertagnoli R, Kumar S (2002) Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications. Eur Spine J 11(Suppl 2):S131–S136

    PubMed  Google Scholar 

  45. McAfee P et al (2007) Treatment of lumbar spinal stenosis with a total posterior arthroplasty pros­thesis: implant description, surgical technique, and a ­prospective report on 29 patients. Neurosurg Focus 22(1):E13

    Google Scholar 

  46. Cunningham BW et al (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 28(20):S110–S117

    Article  PubMed  Google Scholar 

  47. Kotani Y et al (2006) Multidirectional flexibility analysis of anterior and posterior lumbar artificial disc reconstruction: in vitro human cadaveric spine model. Eur Spine J 15(10):1511–1520

    Article  PubMed  Google Scholar 

  48. Bono CM, Kadaba M, Vaccaro AR (2009) Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech 22(5):376–383

    Article  PubMed  Google Scholar 

  49. Gedet P et al (2009) Comparative biomechanical investigation of a modular dynamic lumbar stabilization system and the Dynesys system. Eur Spine J 18(10):1504–1511

    Article  PubMed  Google Scholar 

  50. Kumar A et al (2008) Disc changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years. Spine 33(26):2909–2914

    Article  PubMed  Google Scholar 

  51. Welch WC et al (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22(1):E8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Saldua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elston, J., Saldua, N. (2014). Lumbosacral Instrumentation. In: Patel, V., Patel, A., Harrop, J., Burger, E. (eds) Spine Surgery Basics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34126-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34126-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34125-0

  • Online ISBN: 978-3-642-34126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics