Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7249))

  • 796 Accesses

Abstract

I propose how symbols in the brain could be implemented as spatiotemporal patterns of spikes. A neuron implements a re-write rule; firing when it observes a particular symbol and writing a particular symbol back to the neuronal circuit. Then I show how an input/output function mapped by a neuron can be copied. This permits a population of neuron-based rules to evolve in the brain. We are still very far from understanding how FCG could be implemented in the brain; however, understanding how a basic physical symbol system could be instantiated is a foundation for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.: How Can the Human Mind Occur in the Physical Universe. Oxford University Press (2007)

    Google Scholar 

  2. Belousov, B.P.: A periodic reaction and its mechanism. Compilation of Abstracts on Radiation Medicine 147, 145 (1959)

    Google Scholar 

  3. Biederman, I.: Recognition-by-components: A theory of human image understanding. Phychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  4. Bienenstock, E., Geman, S.: Compositionality in Neural Systems. MIT/Bradford Books, Elsevier (1995)

    Google Scholar 

  5. Bregman, A.S.: Auditory scene analysis. MIT Press, Cambridge (1990)

    Google Scholar 

  6. Bull, L., Kovacs, T.: Foundations of Learning Classifier Systems. STUDFUZZ, vol. 183. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Butz, M.: Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design. STUDFUZZ, vol. 191. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  8. Chklovskii, D., Mel, B., Svoboda, K.: Cortical rewiring and information storage. Nature 431, 782–788 (2004)

    Article  Google Scholar 

  9. Ciortuz, L., Saveluc, V.: Fluid Construction Grammar and Feature Constraint Logics. In: Steels, L. (ed.) Computational Issues in FCG. LNCS (LNAI), vol. 7249, pp. 289–311. Springer, Heidelberg (2012)

    Google Scholar 

  10. Clark, A.: In defense of explicit rules. In: Ramsey, W., Stich, S.P., Rumelhart, D. (eds.) Philosophy and Connectionist Theory. Lawrence Erlbaum (1991)

    Google Scholar 

  11. De Beule, J., Steels, L.: Hierarchy in Fluid Construction Grammars. In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 1–15. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. De Beule, J.: A Formal Deconstruction of Fluid Construction Grammar. In: Steels, L. (ed.) Computational Issues in FCG. LNCS (LNAI), vol. 7249, pp. 215–238. Springer, Heidelberg (2012)

    Google Scholar 

  13. Dudman, J., Tsay, D., Siegelbaum, S.: A role for synaptic inputs at distal dendrites: Instructive signals for hippocampal long-term plasticity. Neuron 56, 866–879 (2007)

    Article  Google Scholar 

  14. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)

    Article  Google Scholar 

  15. Fernando, C.: Co-evolution of lexical and syntactic classifiers during a language game. Evolutionary Intelligence 4(3), 165–182 (2011)

    Article  Google Scholar 

  16. Fernando, C.: Symbol manipulation and rule learning in spiking neuronal networks. Journal of Theoretical Biology 275, 29–41 (2011)

    Article  MathSciNet  Google Scholar 

  17. Fernando, C., Goldstein, R., Szathmáry, E.: The neuronal replicator hypothesis. Neural Computation 22(11), 2809–2857 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernando, C., Karishma, K., Szathmáry, E.: Copying and evolution of neuronal topology. PLoS ONE 3(11), e3775 (2008)

    Article  Google Scholar 

  19. Fernando, C., Szathmáry, E.: Chemical, neuronal and linguistic replicators. In: Pigliucci, M., Müller, G. (eds.) Towards an Extended Evolutionary Synthesis, pp. 209–249. MIT Press, Cambridge (2009)

    Google Scholar 

  20. Fernando, C., Szathmáry, E.: Natural selection in the brain. In: Glatzeder, B., Goel, V., von Müller, A. (eds.) Toward a Theory of Thinking, pp. 291–340. Springer, Berlin (2009)

    Google Scholar 

  21. Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: A critical analysis. Cognition 28, 3–71 (1988)

    Article  Google Scholar 

  22. Gáanti, T.: The Principles of Life. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  23. Gallistel, C., King, P.: Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience. Wiley-Blackwell (2010)

    Google Scholar 

  24. Goertzel, B., Lian, R., Arel, I., de Garis, H., Chen, S.: World survey of artificial brains, part ii: Biologically inspired cognitive architectures. Neurocomputing 74, 30–49 (2010)

    Article  Google Scholar 

  25. Gutig, F., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nature Neuroscience 9(3), 420–428 (2006)

    Article  Google Scholar 

  26. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  27. Holland, J., Reitman, J.: Cognitive systems based on adaptive algorithms. ACM SIGART Bulletin 63, 43–49 (1977)

    Google Scholar 

  28. Hudson, J.: The History of Chemistry. MacMillan (1992)

    Google Scholar 

  29. Ikegaya, Y., et al.: Synfire chains and cortical songs: Temporal modules of cortical activity. Science 304, 559–564 (2004)

    Article  Google Scholar 

  30. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14, 1539–1572 (2003)

    Article  Google Scholar 

  31. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Computation 18(2), 245–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Izhikevich, E.M.: Solving the distal reward problem through linkage of stdp and dopamine signaling. Cerebral Cortex 17, 2443–2452 (2007)

    Article  Google Scholar 

  33. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing dynamics of neuronal groups. Cereb. Cortex 14(8), 933–944 (2004)

    Article  Google Scholar 

  34. Izhikevich, E.M., Hoppensteadt, F.: Polychronous wavefront computations. International Journal of Bifurcation and Chaos 19, 1733–1739 (2009)

    Article  MathSciNet  Google Scholar 

  35. Johnson, H., Goel, A., Buonomano, D.: Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nature Neurosci. 13(8), 917–919 (2010)

    Article  Google Scholar 

  36. Karmiloff-Smith, A.: Beyond Modularity: A Developmental Perspective on Cognitive Science. MIT Press, Cambridge (1996)

    Google Scholar 

  37. Konen, W., von der Malsburg, C.: Learning to generalize from single examples in the dynamic link architecture. Neural Computation 5(5), 719–735 (1993)

    Article  Google Scholar 

  38. Love, B.: Utilizing time: Asynchronous binding. In: Advances in Neural Information Processing Systems, vol. 11, pp. 38–44 (1999)

    Google Scholar 

  39. Magnasco, M.: Chemical kinetics is turing universal. Physical Review Letters 78, 1190–1193 (1997)

    Article  Google Scholar 

  40. von der Malsburg, C.: The what and why of binding: The modeler’s perspective. Neuron 24, 95–104 (1999)

    Article  Google Scholar 

  41. Marcus, G.: The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT Press (2001)

    Google Scholar 

  42. Marcus, G., Vijayan, S., Bandi Rao, S., Vishton, P.: Rule learning by seven-month-old infants. Science 283(5398), 77–80 (1999)

    Article  Google Scholar 

  43. Maynard Smith, J.: The problems of biology. Oxford University Press, Oxford (1986)

    Google Scholar 

  44. Nessler, B., Pfeiffer, M., Maass, W.: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. Theoretical Computer Science, 1–40 (2010)

    Google Scholar 

  45. Penn, D., Holyoak, K., Povinelli, D.: Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences 31(2), 109–130 (2008)

    Google Scholar 

  46. Pichevar, R., Rouat, J., Tai, L.: The oscillatory dynamic link matcher for spiking-neuron-based pattern recognition. Neurocomputing 69 (2006)

    Google Scholar 

  47. Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46(1), 77–105 (1990)

    Article  Google Scholar 

  48. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with resume: Sequence learning, classification and spike-shifting. Neural Computation (2009)

    Google Scholar 

  49. Rao, R., Ballard, D.: Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1), 79–87 (1999)

    Article  Google Scholar 

  50. Seidenberg, M., Elman, J.: Networks are not ’hidden rules’. Trends in Cognitive Sciences 3, 288–289 (1999)

    Article  Google Scholar 

  51. Shastri, L., Ajjanagadde, V.: From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings. Behavioural and Brain Sciences 16, 417–494 (1993)

    Article  Google Scholar 

  52. Santibáñez, J.S.: A Logic Programming Approach to Parsing and Production in Fluid Construction Grammar. In: Steels, L. (ed.) Computational Issues in FCG. LNCS (LNAI), vol. 7249, pp. 239–255. Springer, Heidelberg (2012)

    Google Scholar 

  53. Steels, L. (ed.): Design Patterns in Fluid Construction Grammar, Constructional Approaches to Language, vol. 11. John Benjamins, Amsterdam (2011)

    Google Scholar 

  54. Steels, L. (ed.): Computational Issues in FCG. LNCS (LNAI), vol. 7249. Springer, Heidelberg (2012)

    Google Scholar 

  55. Steels, L., De Beule, J., Neubauer, N.: Linking in Fluid Construction Grammars. In: Proceedings of BNAIC, pp. 11–18. Transactions of the Belgian Royal Society of Arts and Sciences, Brussels (2005)

    Google Scholar 

  56. Szathmáry, E., Fernando, C.: Concluding remarks. In: Calcott, B., Sterelny, K. (eds.) The Major Transitions in Evolution Revisited, pp. 301–310. MIT Press (2011)

    Google Scholar 

  57. van Trijp, R., Steels, L., Beuls, K., Wellens, P.: Fluid construction grammar: The new kid on the block. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. ACL, Avignon (2012)

    Google Scholar 

  58. Wiskott, L., von der Malsburg, C.: Recognizing faces by dynamic link matching. In: Proceedings of ICANN 1995, pp. 347–352 (1995)

    Google Scholar 

  59. Young, J., Waleszczyk, W., Wang, C., Calford, M., Dreher, B., Obermayer, K.: Cortical reorganization consistent with spike timeing but not correlation-dependent plasticity. Nature Neuroscience 10(7), 887–895 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernando, C. (2012). Fluid Construction Grammar in the Brain. In: Steels, L. (eds) Computational Issues in Fluid Construction Grammar. Lecture Notes in Computer Science(), vol 7249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34120-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34120-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34119-9

  • Online ISBN: 978-3-642-34120-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics